
Chapter	2.1:	Data	Structures	-ComplexNumber
1.	Abstract	Data	Types	(ADT)	Theory

1.1.	Intro
Theory	from	the	slides:	http://disi.unitn.it/~montreso/sp/slides/04-strutture.pdf
(http://disi.unitn.it/~montreso/sp/slides/04-strutture.pdf)	(First	slides	until	class	Fraction	included)
Object	Oriented	programming	on	the	the	book
(http://interactivepython.org/runestone/static/pythonds/Introduction/ObjectOrientedProgramminginPythonDefiningClasses.html)
(In	particular,	Fraction	class
(http://interactivepython.org/runestone/static/pythonds/Introduction/ObjectOrientedProgramminginPythonDefiningClasses.html#a-
fraction-class),	in	this	course	we	won't	focus	on	inheritance)

1.2.	Complex	number	theory

1.3.	Datatypes	the	old	way
From	the	definition	we	see	that	to	identify	a	complex	number	we	need	two	float	values	.	One	number	is	for	the
real	part,	and	another	number	is	for	the	imaginary	part.

How	can	we	represent	this	in	Python?	So	far,	you	saw	there	are	many	ways	to	put	two	numbers	together.	One
way	could	be	to	put	as	items	in	a	list	of	two	elements,	and	implicitly	assume	the	first	one	is	the	real	and	the
second	the	imaginary	part:

In	[2]:

c	=	[3.0,	5.0]	

Or	we	could	use	a	tuple:

In	[3]:

c	=	(3.0,	5.0)

A	problem	with	the	previous	representations	is	that	a	casual	observer	might	not	know	exactly	the	meaning	of	the
two	numbers.	We	could	be	more	explicit	and	store	the	values	into	a	dictionary,	using	keys	to	identify	the	two
parts:

In	[4]:

c	=	{'real':	3.0,	'imaginary':	5.0}

Out[1]:
Algolab
(index.html#Chapters)

Chapter	2.1:	Data
Structures	-
ComplexNumber

In	[5]:

print	c

In	[6]:

print	c['real']

In	[7]:

print	c['imaginary']

Now,	writing	the	whole	record	{'real':	3.0,	'imaginary':	5.0}	each	time	we	want	to	create	a	complex
number	might	be	annoying	and	error	prone.	To	help	us,	we	can	create	a	little	shortcut	function	named	
complex_number	that	creates	and	returns	the	dictionary:

In	[8]:

def	complex_number(real,	imaginary):
				d	=	{}
				d['real']	=	real
				d['imaginary']	=	imaginary
				return	d

In	[9]:

c	=	complex_number(3.0,	5.0)

In	[10]:

print	c

To	do	something	with	our	dictionary,	we	would	then	define	functions,	like	for	example	complex_str	to	show	them
nicely:

In	[11]:

def	complex_str(cn):
				return	str(cn['real'])	+	"	+	"	+	str(cn['imaginary'])	+	"i"

In	[12]:

c	=	complex_number(3.0,	5.0)
print	complex_str(c)

We	could	do	something	more	complex,	like	defining	the	phase	of	the	complex	number	which	returns	a	float:

{'real':	3.0,	'imaginary':	5.0}

3.0

5.0

{'real':	3.0,	'imaginary':	5.0}

3.0	+	5.0i

IMPORTANT:	In	these	exercises,	we	care	about	programming,	not	complex
numbers	theory.	There's	no	need	to	break	your	head	over	formulas!

In	[14]:

import	math
def	phase(cn):
								"""	Returns	a	float	which	is	the	phase	(that	is,	the	vector	angle)	of	the	complex	numb
er	
																				
												See	definition:	https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_ar
gument
								"""
								return	math.atan2(cn['imaginary'],	cn['real'])

In	[15]:

c	=	complex_number(3.0,	5.0)
print	phase(c)

We	could	even	define	functions	that	that	take	the	complex	number	and	some	other	parameter,	for	example	we
could	define	the	log	of	complex	numbers,	which	return	another	complex	number	(mathematically	it	would	be
infinitely	many,	but	we	just	pick	the	first	one	in	the	series):

In	[16]:

import	math
def	log(cn,	base):
								"""	Returns	another	complex	number	which	is	the	logarithm	of	this	complex	number	
												
												See	definition	(accomodated	for	generic	base	b):
												https://en.wikipedia.org/wiki/Complex_number#Natural_logarithm
								"""						
								return	{'real':math.log(cn['real'])	/	math.log(base),	
																'imaginary'	:	phase(cn)	/	math.log(base)}

In	[17]:

print	log(c,2)

You	see	we	got	our	dictionary	representing	a	complex	number.	If	we	want	a	nicer	display	we	can	call	on	it	the	
complex_str	we	defined:

In	[18]:

print	complex_str(log(c,2))

1.03037682652

{'real':	1.5849625007211563,	'imaginary':	1.4865195378735334}

1.58496250072	+	1.48651953787i

1.4.	Finding	the	pattern
So,	what	have	we	done	so	far?

1)	Decided	a	data	format	for	the	complex	number,	saw	that	the	dictionary	is	quite	convenient

2)	Defined	a	function	to	quickly	create	the	dictionary:

def	complex_number(real,	imaginary):

3)	Defined	some	function	like	phase	and	log	to	do	stuff	on	the	complex	number

def	phase(cn):
def	log(cn,	base):

4)	Defined	a	function	complex_str	to	express	the	complex	number	as	a	readable	string:

def	complex_str(cn):

Notice	that:

all	functions	above	take	a	cn	complex	number	dictionary	as	first	parameter
the	functions	phase	and	log	are	quite	peculiar	to	complex	number,	and	to	know	what	they	do	you	need
to	have	deep	knowledge	of	what	a	complex	number	is.
the	function	complex_str	is	more	intuitive,	because	it	covers	the	common	need	of	giving	a	nice	string
representation	to	the	data	format	we	just	defined.	Also,	we	used	the	word	str	as	part	of	the	name	to	give
a	hint	to	the	reader	that	probably	the	function	behaves	in	a	way	similar	to	the	Python	function	str().

When	we	encounter	a	new	datatype	in	our	programs,	we	often	follow	the	procedure	of	thinking	listed	above.
Such	procedure	is	so	common	that	software	engineering	people	though	convenient	to	provide	a	specific
programming	paradigm	to	represent	it,	called	Object	Oriented	programming.	We	are	now	going	to	rewrite	the
complex	number	example	using	such	paradigm.

1.5.	Object	Oriented	programming
In	object	oriented	programming,	we	usually

1.	 Introduce	new	datatypes	by	declaring	a	class,	named	for	example	ComplexNumber
2.	 Are	given	a	dictionary	and	define	how	data	is	stored	in	the	dictionary	(i.e.	in	fields	real	and	imaginary)
3.	 Define	a	way	to	construct	specific	instances	,	like	3	+	2i,	5	+	6i	(instances	are	also	called	objects)
4.	 Define	some	methods	to	operate	on	the	instances	(like	phase)
5.	 Define	some	special	methods	to	customize	how	Python	treats	instances	(for	example	for	displaying	them

as	strings	when	printing)

Let's	now	create	our	first	class.

2.	ComplexNumber	class

2.1.	Class	declaration
A	minimal	class	declaration	will	at	least	declare	the	class	name	and	the	__init__	method:

In	[19]:

class	ComplexNumber:

				def	__init__(self,	real,	imaginary):
								self.real	=	real
								self.imaginary	=	imaginary							

Here	we	declare	to	Python	that	we	are	starting	defining	a	template	for	a	new	class	called	ComplexNumber.	This
template	will	hold	a	collection	of	functions	(called	methods)	that	manipulate	instances	of	complex	numbers
(instances	are	1.0	+	2.0i,	3.0	+	4.0i,	...).

2.2.	Constructor	__init__
With	the	dictonary	model,	to	create	complex	numbers	remember	we	defined	that	small	utility	function	
complex_number,	where	inside	we	were	creating	the	dictionary:

def	complex_number(real,	imaginary):
				d	=	{}
				d['real']	=	real
				d['imaginary']	=	imaginary
				return	d

With	classes,	to	create	objects	we	have	instead	to	define	a	so-called	constructor	method	called	__init__:

In	[21]:

class	ComplexNumber:

				def	__init__(self,	real,	imaginary):
								self.real	=	real
								self.imaginary	=	imaginary

__init__	is	a	very	special	method,	that	has	the	job	to	initialize	an	instance	of	a	complex	number.	It	has	three
important	features:

a)	it	is	defined	like	a	function,	inside	the	ComplexNumber	declaration	(as	usual,	indentation	matters!)

b)	it	always	takes	as	first	parameter	self,	which	is	an	instance	of	a	special	kind	of	dictionary	that	will	hold	the
fields	of	the	complex	number.	Inside	the	previous	complex_number	function,	we	were	creating	a	dictionary	d.	In	
__init__	method,	the	dictionary	instead	is	automatically	created	by	Python	and	given	to	us	in	the	form	of
parameter	self

c)	__init__	does	not	return	anything:	this	is	different	from	the	previous	complex_number	function	where	instead
we	were	returning	the	dictionary	d.

Later	we	will	explain	better	these	properties.	For	now,	let's	just	concentrate	on	the	names	of	things	we	see	in	the
declaration.

IMPORTANT:	Although	classes	can	have	any	name	(i.e.	complex_number,	
complexNumber,	...),	by	convention	you	SHOULD	use	a	camel	cased	name	like	
ComplexNumber,	with	capital	letters	as	initials	and	no	underscores.

In	[23]:

class	ComplexNumber:

				def	__init__(donald_duck,	mickey_mouse,	goofy):
								donald_duck.real	=	mickey_mouse
								donald_duck.imaginary	=	goofy

Once	the	__init__	method	is	defined,	we	can	create	a	specific	ComplexNumber	instance	with	a	call	like	this:

In	[24]:

c	=	ComplexNumber(3.0,5.0)
print	c

What	happend	here?

init	2.2.1)	We	told	Python	we	want	to	create	a	new	particular	instance	of	the	template	defined	by	class	
ComplexNumber.	As	parameters	for	the	instance	we	indicated	3.0	and	5.0.

init	2.2.2)	Python	created	a	new	special	dictionary	for	the	instance

init	2.2.3)	Python	passed	the	special	dictionary	as	first	parameter	of	the	method	__init__,	so	it	will	be	bound
to	parameter	self.	As	second	and	third	arguments	passed	3.0	and	5.0,	which	will	be	bound	respectively	to
parameters	real	and	imaginary

WARNING:	There	can	be	only	one	constructor	method	per	class,	and	MUST	be
named	__init__

WARNING:	__init__	MUST	take	at	least	one	parameter,	by	convention	it	is
usually	named	self

IMPORTANT:	self	is	just	a	name	we	give	to	the	first	parameter.	It	could	be	any
name	our	fantasy	suggest	and	the	program	would	behave	exactly	the	same!	

If	the	editor	you	are	using	will	evidence	it	in	some	special	color,	it	is	because	it	is
aware	of	the	convention	but	not	because	self	is	some	special	Python	keyword.

IMPORTANT:	In	general,	any	of	the	__init__	parameters	can	have	completely
arbitrary	names,	so	for	example	the	following	code	snippet	would	work	exactly
the	same	as	the	initial	definition:

<__main__.ComplexNumber	instance	at	0x7fa880042758>

WARNING:	to	create	the	instance,	we	used	the	name	of	the	class
`ComplexNumber`	following	it	by	an	open	round	parenthesis	and	parameters	like
a	function	call:	c=ComplexNumber(3.0,5.0)	

Writing	just:	c	=	ComplexNumber	would	NOT	instantiate	anything	and	we	would
end	up	messing	with	the	template	ComplexNumber	,	which	is	a	collection	of
functions	for	complex	numbers.

init	2.2.4)	In	the	__init__	method,	the	instructions

self.real	=	real
self.imaginary	=	imaginary

first	create	a	key	in	the	dictionary	called	real	associating	to	the	key	the	value	of	the	parameter	real	(in	the	call
is	3.0).	Then	the	value	5.0	is	bound	to	the	key	imaginary.

Now	one	important	word	of	wisdom:

Since	self	is	a	kind	of	dictionary,	you	might	be	tempted	to	do	like	this:

In	[29]:

class	EvilComplexNumber:
				def	__init__(self,	real,	imaginary):								
								self	=	{'real':real,	'imaginary':imaginary}		

but	to	the	outside	world	this	will	bring	no	effect.	For	example,	let's	say	somebody	from	outside	makes	a	call	like
this:

In	[30]:

ce	=	EvilComplexNumber(3.0,	5.0)

At	the	first	attempt	of	accessing	any	field,	you	would	get	an	error	because	after	the	initalization	c	will	point	to	the
yet	untouched	self	created	by	Python,	and	not	to	your	dictionary	(which	at	this	point	will	be	simply	lost):

print	ce.real

AttributeError:	EvilComplexNumber	instance	has	no	attribute	'real'

WARNING:	When	instantiating	an	object	with	a	call	like	c=ComplexNumber(3.0,5.0)
you	don't	need	to	pass	a	dictionary	as	first	parameter!	Python	will	implicitly
create	it	and	pass	it	as	first	parameter	to	__init__

IMPORTANT:	we	said	Python	provides	__init__	with	a	special	kind	of	dictionary
as	first	parameter.	One	of	the	reason	it	is	special	is	that	you	can	access	keys
using	the	dot	like	self.my_key.	With	ordinary	dictionaries	you	would	have	to
write	the	brackets	like	self["my_key"]

IMPORTANT:	like	with	dictionaries,	we	can	arbitrarily	choose	the	name	of	the
keys,	and	which	values	to	associate	to	them.

IMPORTANT:	In	the	following,	we	will	often	refer	to	keys	of	the	self	dictionary
with	the	terms	field,	and/or	attribute.

!!!!!!	COMMANDMENT:	NEVER	EVER	REASSIGN	self	!!!!!!!	:

In	general,	you	DO	NOT	reassign	self	to	anything.	Here	are	other	example	DON'Ts:

self	=	['666']		#	self	is	only	supposed	to	be	a	sort	of	dictionary	which	is	passed	by	Py
thon
self	=	6								#	self	is	only	supposed	to	be	a	sort	of	dictionary	which	is	passed	by	Py
thon</p>

init	2.2.5)	Python	automatically	returns	from	__init__	the	special	dictionary	self

init	2.2.6)	The	result	of	the	call	(so	the	special	dictionary)	is	bound	to	external	variable	'c`:

c	=	ComplexNumber(3.0,	5.0)

init	2.2.7)	You	can	then	start	using	c	as	any	variable

In	[32]:

print	c

From	the	output,	you	see	we	have	indeed	an	instance	of	the	class	ComplexNumber.	To	see	the	difference	between
instance	and	class,	you	can	try	printing	the	class	instead:

In	[33]:

print	ComplexNumber

We	can	now	access	the	fields	of	the	special	dictionary	by	using	the	dot	notation	as	we	were	doing	with	the	'self`:

In	[35]:

print	c.real

In	[36]:

print	c.imaginary

If	we	want,	we	can	also	change	them:

In	[37]:

c.real	=	6.0
print	c.real

WARNING:	__init__	must	*NOT*	have	a	return	statement	!	Python	will	implicitly
return		self	!

<__main__.ComplexNumber	instance	at	0x7fa880042758>

__main__.ComplexNumber

IMPORTANT:	You	can	create	an	infinite	number	of	different	instances	(i.e.
ComplexNumber(1.0,	1.0),	ComplexNumber(2.0,	2.0),	ComplexNumber(3.0,	3.0),	...),
but	you	will	have	only	one	class	definition	for	them	(ComplexNumber).

3.0

5.0

6.0

2.3.	Defining	methods
Let's	make	our	class	more	interesting	by	adding	the	method	phase(self)	to	operate	on	the	complex	number:

In	[38]:

import	unittest
import	math

class	ComplexNumber:

				def	__init__(self,	real,	imaginary):
								self.real	=	real
								self.imaginary	=	imaginary

				def	phase(self):
								"""	Returns	a	float	which	is	the	phase	(that	is,	the	vector	angle)	of	the	complex	numb
er	
								
												This	method	is	something	we	introduce	by	ourselves,	according	to	the	definition:
												https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument
								"""
								return	math.atan2(self.imaginary,	self.real)		

The	method	takes	as	first	parameter	self	which	again	is	a	special	dictionary.	We	expect	the	dictionary	to	have
already	been	initialized	with	some	values	for	real	and	imaginary	fields.	We	can	access	them	with	the	dot
notation	as	we	did	before:

return	math.atan2(self.imaginary,	self.real)

How	can	we	call	the	method	on	instances	of	complex	numbers?	We	can	access	the	method	name	from	an
instance	using	the	dot	notation	as	we	did	with	other	keys:

In	[39]:

c	=	ComplexNumber(3.0,5.0)
print	c.phase()

What	happens	here?

By	writing	c.phase()	,	we	call	the	method	phase(self)	which	we	just	defined.	The	method	expects	as	first
parameter	self	a	class	instance,	but	in	the	call	c.phase()	apparently	we	don't	provide	any	parameter.	Here
some	magic	is	going	on,	and	Python	implicitly	is	passing	as	first	parameter	the	special	dictionary	bound	to	c.
Then	it	executes	the	method	and	returns	the	desired	float.

We	can	also	define	methods	that	take	more	than	one	parameter,	and	also	that	create	and	return	ComplexNumber
instances,	like	for	example	the	method	log(self,	base):

1.03037682652

WARNING:	when	calling	a	method,	you	MUST	put	the	round	parenthesis	after	the
method	name	like	in		c.phase()	!	

If	you	just	write	c.phase	without	parenthesis	you	will	get	back	an	address	to	the
physical	location	of	the	method	code:	

				>>>	c.phase

				<bound	method	ComplexNumber.phase	of	<__main__.ComplexNumber	instance	at	
0xb465a4cc>>

In	[41]:

import	math

class	ComplexNumber:

				def	__init__(self,	real,	imaginary):
								self.real	=	real
								self.imaginary	=	imaginary

				def	phase(self):
								"""	Returns	a	float	which	is	the	phase	(that	is,	the	vector	angle)	of	the	complex	numb
er	
								
												This	method	is	something	we	introduce	by	ourselves,	according	to	the	definition:
												https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument
								"""
								return	math.atan2(self.imaginary,	self.real)				
				
				def	log(self,	base):
								"""	Returns	another	ComplexNumber	which	is	the	logarithm	of	this	complex	number	
												
												This	method	is	something	we	introduce	by	ourselves,	according	to	the	definition:
												(accomodated	for	generic	base	b)
												https://en.wikipedia.org/wiki/Complex_number#Natural_logarithm
								"""						
								return	ComplexNumber(math.log(self.real)	/	math.log(base),	self.phase()	/	math.log(bas
e))	
	

To	call	log,	you	can	do	as	with	phase	but	this	time	you	will	need	also	to	pass	one	parameter	for	the	base
parameter,	in	this	case	we	use	the	exponential	math.e:

In	[43]:

c	=	ComplexNumber(3.0,	5.0)
logarithm	=	c.log(math.e)

In	[45]:

print	logarithm

To	see	if	the	method	worked	and	we	got	back	we	got	back	a	different	complex	number,	we	can	print	the	single
fields:

In	[46]:

print	logarithm.real

WARNING:	ALL	METHODS	MUST	HAVE	AT	LEAST	ONE	PARAMETER,	WHICH	BY
CONVENTION	IS	NAMED	self	!

WARNING:	As	before	for	phase,	notice	we	didn't	pass	any	dictionary	as	first
parameter!	Python	will	implicitly	pass	as	first	argument	the	instance	c	as	self,
and	math.e	as	base

<__main__.ComplexNumber	instance	at	0x7fa880042e60>

1.09861228867

In	[47]:

print	logarithm.imaginary

2.4.	A	better	print	with	__str__

As	we	said,	printing	is	not	so	informative:

In	[48]:

print	ComplexNumber(3.0,	5.0)

It	would	be	nice	to	instruct	Python	to	express	the	number	like	"3.0	+	5.0i"	whenever	we	want	to	see	the	
ComplexNumber	represented	as	a	string.	How	can	we	do	it?	Luckily	for	us,	defining	the	__str__(self)	method
will	do	the	magic	(see	bottom	of	class	definition):

In	[49]:

import	math

class	ComplexNumber:

				def	__init__(self,	real,	imaginary):
								self.real	=	real
								self.imaginary	=	imaginary

				def	phase(self):
								"""	Returns	a	float	which	is	the	phase	(that	is,	the	vector	angle)	of	the	complex	numb
er	
								
												This	method	is	something	we	introduce	by	ourselves,	according	to	the	definition:
												https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument
								"""
								return	math.atan2(self.imaginary,	self.real)				
				
				def	log(self,	base):
								"""	Returns	another	ComplexNumber	which	is	the	logarithm	of	this	complex	number	
												
												This	method	is	something	we	introduce	by	ourselves,	according	to	the	definition:
												(accomodated	for	generic	base	b)
												https://en.wikipedia.org/wiki/Complex_number#Natural_logarithm
								"""						
								return	ComplexNumber(math.log(self.real)	/	math.log(base),	self.phase()	/	math.log(bas
e))	

				def	__str__(self):
								return	str(self.real)	+	"	+	"	+	str(self.imaginary)	+	"i"
	

1.03037682652

<__main__.ComplexNumber	instance	at	0x7fa88004cea8>

In	[51]:

c	=	ComplexNumber(3.0,	5.0)

We	can	also	pretty	print	the	whole	complex	number.	Internally,	print	function	will	look	if	the	class	
ComplexNumber	has	defined	a	method	named	__str__.	If	so,	it	will	pass	to	the	method	the	instance	c	as	the	first
argument,	which	in	our	methods	will	end	up	in	the	self	parameter:

In	[52]:

print	c

In	[53]:

print	c.log(2)

2.5.	ComplexNumber	code	skeleton
We	are	now	ready	to	write	methods	on	our	own.	Create	a	new	file	and	copy	paste	the	following	skeleton,
including	the	tests,	then	proceed	doing	the	exercises.

In	[54]:

import	unittest
import	math

class	ComplexNumber:

				def	__init__(self,	real,	imaginary):
								self.real	=	real
								self.imaginary	=	imaginary

				def	phase(self):
								"""	Returns	a	float	which	is	the	phase	(that	is,	the	vector	angle)	of	the	complex	numb
er	
								
												This	method	is	something	we	introduce	by	ourselves,	according	to	the	definition:
												https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument
								"""
								return	math.atan2(self.imaginary,	self.real)				
				
				def	log(self,	base):
								"""	Returns	another	ComplexNumber	which	is	the	logarithm	of	this	complex	number	
												
												This	method	is	something	we	introduce	by	ourselves,	according	to	the	definition:
												(accomodated	for	generic	base	b)
												https://en.wikipedia.org/wiki/Complex_number#Natural_logarithm
								"""						
								return	ComplexNumber(math.log(self.real)	/	math.log(base),	self.phase()	/	math.log(bas

IMPORTANT:	all	methods	starting	and	ending	with	a	double	underscore	__	have	a
special	meaning	in	Python:	depending	on	their	name,	they	override	some	default
behaviour.	In	this	case,	with	__str__	we	are	overriding	how	Python	represents	a	
ComplexNumber	instance	into	a	string.

WARNING:	Since	we	are	overriding	Python	default	behaviour,	it	is	very	important
that	we	follow	the	specs	of	the	method	we	are	overriding	to	the	letter.	In	our
case,	the	specs	for	__str__
(https://docs.python.org/2/reference/datamodel.html#object.__str__)	obviously
state	you	MUST	return	a	string.

3.0	+	5.0i

1.58496250072	+	1.48651953787i

								return	ComplexNumber(math.log(self.real)	/	math.log(base),	self.phase()	/	math.log(bas
e))	

				def	__str__(self):
								return	str(self.real)	+	"	+	"	+	str(self.imaginary)	+	"i"
				

class	ComplexNumberTest(unittest.TestCase):

				"""	Test	cases	for	ComplexNumber

									Note	this	is	a	*completely*	separated	class	from	ComplexNumber	and
									we	declare	it	here	just	for	testing	purposes!
									The	'self'	you	see	here	have	nothing	to	do	with	the	selfs	from	the
									ComplexNumber	methods!								
				"""
								
				def	test_init(self):
								self.assertEqual(ComplexNumber(1,2).real,	1)								
								self.assertEqual(ComplexNumber(1,2).imaginary,	2)
								
				def	test_phase(self):
								"""	
												NOTE:	we	can't	use	assertEqual,	as	the	result	of	phase()	is	a	
												float	number	which	may	have	floating	point	rounding	errors.	So	it's
												necessary	to	use	assertAlmostEqual
												As	an	option	with	the	delta	you	can	declare	the	precision	you	require.
												For	more	info	see	Python	docs:	
												https://docs.python.org/2/library/unittest.html#unittest.TestCase.assertAlmostEqua
l
												
												NOTE:	assertEqual	might	still	work	on	your	machine	but	just	DO	NOT	use	it	
												for	float	numbers!!!
								"""							
								self.assertAlmostEqual(ComplexNumber(0.0,1.0).phase(),	math.pi	/	2,	delta=0.001)
								
				def	test_str(self):								
								self.assertEqual(str(ComplexNumber(1,2)),	"1	+	2i")								
								#self.assertEqual(str(ComplexNumber(1,0)),	"1")
								#self.assertEqual(str(ComplexNumber(1.0,0)),	"1.0")
								#self.assertEqual(str(ComplexNumber(0,1)),	"i")
								#self.assertEqual(str(ComplexNumber(0,0)),	"0")	

								
				def	test_log(self):
								c	=	ComplexNumber(1.0,1.0)
								l	=	c.log(math.e)
								self.assertAlmostEqual(l.real,	0.0,	delta=0.001)
								self.assertAlmostEqual(l.imaginary,	c.phase(),	delta=0.001)

2.6.	Complex	numbers	magnitude

Implement	the	magnitude	method,	using	this	signature:

def	magnitude(self):
								"""	Returns	a	float	which	is	the	magnitude	(that	is,	the	absolute	value)	of	the	
complex	number	

												This	method	is	something	we	introduce	by	ourselves,	according	to	the	definit
ion:
												https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument
								"""
								raise	Exception("TODO	implement	me!")

To	test	it,	add	this	test	case	to	ComplexNumberTest	class	(notice	the	almost	in	assertAlmostEquals	!!!):

def	test_magnitude(self):
								self.assertAlmostEqual(ComplexNumber(3.0,4.0).magnitude(),5,	delta=0.001)

2.7.	Complex	numbers	equality
Here	we	will	try	to	give	you	a	glimpse	of	some	aspects	related	to	Python	equality,	and	trying	to	respect	interfaces
when	overriding	methods.	Equality	can	be	a	nasty	subject,	here	we	will	treat	it	in	a	simplified	form.

Implement	equality	for	ComplexNumber	more	or	less	as	it	was	done	for	Fraction

Use	this	method	signature:

def	__eq__(self,	other):

and	use	this	simple	test	case	to	check	for	equality:

def	test_integer_equality(self):
								"""
												Note	all	other	tests	depend	on	this	test	!

												We	want	also	to	test	the	constructor,	so	in	c	we	set	stuff	by	hand				
								"""
								c	=	ComplexNumber(0,0)
								c.real	=	1							
								c.imaginary	=	2								
								self.assertEquals(c,	ComplexNumber(1,2))

Beware	'equality'	is	tricky	in	Python	for	float	numbers!	Rule	of	thumb:	when	overriding	__eq__,	use
'dumb'	equality,	two	things	are	the	same	only	if	their	parts	are	literally	equal
If	instead	you	need	to	determine	if	two	objects	are	similar,	define	other	'closeness'	functions.
(Non	mandatory	read)	if	you	are	interested	in	the	gory	details	of	equality,	see

How	to	Override	comparison	operators	in	Python	(http://jcalderone.livejournal.com/32837.html)
Messing	with	hashing	(http://www.asmeurer.com/blog/posts/what-happens-when-you-mess-with-
hashing-in-python/)

2.8.	Complex	numbers	isclose
Complex	numbers	can	be	represented	as	vectors,	so	intuitively	we	can	determine	if	a	complex	number	is	close	to
another	by	checking	that	the	distance	between	its	vector	tip	and	the	the	other	tip	is	less	than	a	given	delta.
There	are	more	precise	ways	to	calculate	it,	but	here	we	prefer	keeping	the	example	simple.

Given	two	complex	numbers

z1 = a + bi

and

z2 = c + di

We	can	consider	them	as	close	if	they	satisfy	this	condition:

√(a − c)2 + (b − d)2 < delta

Implement	the	method,	adding	it	to	ComplexNumber	class:

def	isclose(self,	c,	delta):
								"""	Returns	True	if	the	complex	number	is	within	a	delta	distance	from	complex	n
umber	c.																																
								"""
								raise	Exception("TODO	Implement	me!")

and	add	this	test	case	to	ComplexNumberTest	class:

def	test_isclose(self):
								"""		Notice	we	use	`assertTrue`	because	we	expect	`isclose`	to	return	a	`bool`	v
alue,	and	
													we	also	test	a	case	where	we	expect	`False`
								"""
								self.assertTrue(ComplexNumber(1.0,1.0).isclose(ComplexNumber(1.0,1.1),	0.2))				
				
								self.assertFalse(ComplexNumber(1.0,1.0).isclose(ComplexNumber(10.0,10.0),	0.2))

REMEMBER:	Equality	with	__eq__	and	closeness	functions	like	isclose	are	very
different	things.	Equality	should	check	if	two	objects	have	the	same	memory
address	or,	alternatively,	if	they	contain	the	same	things,	while	closeness
functions	should	check	if	two	objects	are	similar.	You	should	never	use	functions
like	isclose	inside	__eq__	methods,	unless	you	really	know	what	you're	doing.

2.9.	Complex	numbers	addition

a	and	c	correspond	to	real,	b	and	d	correspond	to	imaginary
implement	addition	for	ComplexNumber	more	or	less	as	it	was	done	for	Fraction	in	theory	slides
write	some	tests	as	well!

Use	this	definition:

def	__add__(self,	other):
				raise	Exception("TODO	implement	me!")

And	add	this	to	the	ComplexNumberTest	class:

def	test_add_zero(self):
								self.assertEquals(ComplexNumber(1,2)	+	ComplexNumber(0,0),	ComplexNumber(1,2));

				def	test_add_numbers(self):								
								self.assertEquals(ComplexNumber(1,2)	+	ComplexNumber(3,4),	ComplexNumber(4,6));

2.10.	Adding	a	scalar
We	defined	addition	among	ComplexNumbers,	but	what	about	addition	among	a	ComplexNumber	and	an	int	or
a	float?

Will	this	work?

ComplexNumber(3,4)	+	5

What	about	this?

ComplexNumber(3,4)	+	5.0

Try	to	add	the	following	method	to	your	class,	and	check	if	it	does	work	with	the	scalar:

In	[56]:

				def	__add__(self,	other):	
									#	checks	other	object	is	instance	of	the	class	ComplexNumber
								if	isinstance(other,	ComplexNumber):	
												return	ComplexNumber(self.real	+	other.real,self.imaginary	+	other.imaginary)
								
								#	else	checks	the	basic	type	of	other	is	int	or	float	
								elif	type(other)	is	int	or	type(other)	is	float:		
												return	ComplexNumber(self.real	+	other,	self.imaginary)
								
								#	other	is	of	some	type	we	don't	know	how	to	process.	
								#	In	this	case	the	Python	specs	say	we	MUST	return	'NotImplemented'
								else:
												return	NotImplemented

Hopefully	now	you	have	a	better	add.	But	what	about	this?	Will	this	work?

5	+	ComplexNumber(3,4)

Answer:	it	won't,	Python	needs	further	instructions.	Usually	Python	tries	to	see	if	the	class	of	the	object	on	left	of
the	expression	defines	addition	for	operands	to	the	right	of	it.	In	this	case	on	the	left	we	have	a	float	number,
and	float	numbers	don't	define	any	way	to	deal	to	the	right	with	your	very	own	ComplexNumber	class.	So	as	a	last
resort	Python	tries	to	see	if	your	ComplexNumber	class	has	defined	also	a	way	to	deal	with	operands	to	the	left	of
the	ComplexNumber,	by	looking	for	the	method	__radd__	,	which	means	reverse	addition	.	Here	we	implement	it	:

def	__radd__(self,	other):
								"""	Returns	the	result	of	expressions	like				other	+	self						"""
								if	(type(other)	is	int	or	type(other)	is	float):
												return	ComplexNumber(self.real	+	other,	self.imaginary)
								else:
												return	NotImplemented

To	check	it	is	working	and	everything	is	in	order	for	addition,	add	these	test	cases:

def	test_add_zero(self):
								self.assertEquals(ComplexNumber(1,2)	+	ComplexNumber(0,0),	ComplexNumber(1,2));

				def	test_add_numbers(self):								
								self.assertEquals(ComplexNumber(1,2)	+	ComplexNumber(3,4),	ComplexNumber(4,6));	
							

				def	test_add_scalar_right(self):								
								self.assertEquals(ComplexNumber(1,2)	+	3,	ComplexNumber(4,2));								

				def	test_add_scalar_left(self):								
								self.assertEquals(3	+	ComplexNumber(1,2),	ComplexNumber(4,2));								

				def	test_add_negative(self):
								self.assertEquals(ComplexNumber(-1,0)	+	ComplexNumber(0,-1),	ComplexNumber(-1,-1
));

2.11.	Complex	numbers	multiplication

Implement	multiplication	for	ComplexNumber,	taking	inspiration	from	previous	__add__	implementation
Can	you	extend	multiplication	to	work	with	scalars	(both	left	and	right)	as	well?

To	implement	__mul__,	copy	this	definition	into	ComplexNumber	class:

def	__mul__(self,	other):
				raise	Exception("TODO	Implement	me!")

and	add	test	cases	to	ComplexNumberTest	class:

def	test_mul_by_zero(self):
								self.assertEquals(ComplexNumber(0,0)	*	ComplexNumber(1,2),	ComplexNumber(0,0));

				def	test_mul_just_real(self):
								self.assertEquals(ComplexNumber(1,0)	*	ComplexNumber(2,0),	ComplexNumber(2,0));

				def	test_mul_just_imaginary(self):
								self.assertEquals(ComplexNumber(0,1)	*	ComplexNumber(0,2),	ComplexNumber(-2,0));
								

				def	test_mul_scalar_right(self):
								self.assertEquals(ComplexNumber(1,2)	*	3,	ComplexNumber(3,6));

				def	test_mul_scalar_left(self):
								self.assertEquals(3	*	ComplexNumber(1,2),	ComplexNumber(3,6));

3.	Solutions

3.1.	ComplexNumber	Solution

In	[57]:

import	unittest
import	math

class	ComplexNumber:

				def	__init__(self,	real,	imaginary):
								self.real	=	real
								self.imaginary	=	imaginary

				def	__str__(self):
								return	str(self.real)	+	"	+	"	+	str(self.imaginary)	+	"i"

				def	phase(self):
								"""	Returns	a	float	which	is	the	phase	(that	is,	the	vector	angle)	of	the	complex	numb
er	
								
												This	method	is	something	we	introduce	by	ourselves,	according	to	the	definition:
												https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument
								"""
								return	math.atan2(self.imaginary,	self.real)				
				
				def	log(self,	base):

				def	log(self,	base):
								"""	Returns	another	ComplexNumber	which	is	the	logarithm	of	this	complex	number	
												
												This	method	is	something	we	introduce	by	ourselves,	according	to	the	definition:
												(accomodated	for	generic	base	b)
												https://en.wikipedia.org/wiki/Complex_number#Natural_logarithm
								"""						
								return	ComplexNumber(math.log(self.real)	/	math.log(base),	self.phase()	/	math.log(bas
e))	
				
				
				def	magnitude(self):
								"""	Returns	a	float	which	is	the	magnitude	(that	is,	the	absolute	value)	of	the	comple
x	number	
								
												This	method	is	something	we	introduce	by	ourselves,	according	to	the	definition:
												https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument
								"""
								return	math.sqrt(self.real**2	+	self.imaginary**2)
				
				
				def	__eq__(self,	other):	
								return	self.real	==	other.real		and	self.imaginary	==	other.imaginary

				def	isclose(self,	c,	delta):
								"""	Returns	True	if	the	complex	number	is	within	a	delta	distance	from	complex	number	
c.																																
								"""
								return	math.sqrt((self.real-c.real)**2	+	(self.imaginary-c.imaginary)**2)	<	delta
				
				def	__add__(self,	other):	
								if	isinstance(other,	ComplexNumber):	
												return	ComplexNumber(self.real	+	other.real,self.imaginary	+	other.imaginary)
								elif	type(other)	is	int	or	type(other)	is	float:
												return	ComplexNumber(self.real	+	other,	self.imaginary)
								else:
												return	NotImplemented
								

				def	__radd__(self,	other):	
								if	(type(other)	is	int	or	type(other)	is	float):
												return	ComplexNumber(self.real	+	other,	self.imaginary)
								else:
												return	NotImplemented
				
				
				def	__mul__(self,	other):	
								
								if	isinstance(other,	ComplexNumber):	
												return	ComplexNumber(self.real	*	other.real	-	self.imaginary	*	other.imaginary,
																																	self.imaginary	*	other.real	+	self.real	*	other.imaginary)
								elif	type(other)	is	int	or	type(other)	is	float:
												return	ComplexNumber(self.real	*	other,	self.imaginary	*	other)
								else:
												return	NotImplemented

				def	__rmul__(self,	other):
								if	(type(other)	is	int	or	type(other)	is	float):
												return	ComplexNumber(self.real	*	other,	self.imaginary	*	other)
								else:
												return	NotImplemented
																																

class	ComplexNumberTest(unittest.TestCase):

				"""	Test	cases	for	ComplexNumber

									Note	this	is	a	*completely*	separated	class	from	ComplexNumber	and
									we	declare	it	here	just	for	testing	purposes!
									The	'self'	you	see	here	have	nothing	to	do	with	the	selfs	from	the
									ComplexNumber	methods!								
				"""
								

								

				def	test_init(self):
								self.assertEqual(ComplexNumber(1,2).real,	1)								
								self.assertEqual(ComplexNumber(1,2).imaginary,	2)
								
				def	test_phase(self):
								"""	
												NOTE:	we	can't	use	assertEqual,	as	the	result	of	phase()	is	a	
												float	number	which	may	have	floating	point	rounding	errors.	So	it's
												necessary	to	use	assertAlmostEqual
												As	an	option	with	the	delta	you	can	declare	the	precision	you	require.
												For	more	info	see	Python	docs:	
												https://docs.python.org/2/library/unittest.html#unittest.TestCase.assertAlmostEqua
l
												
												NOTE:	assertEqual	might	still	work	on	your	machine	but	just	DO	NOT	use	it	
												for	float	numbers!!!
								"""							
								self.assertAlmostEqual(ComplexNumber(0.0,1.0).phase(),	math.pi	/	2,	delta=0.001)
								
				def	test_str(self):								
								self.assertEqual(str(ComplexNumber(1,2)),	"1	+	2i")								
								#self.assertEqual(str(ComplexNumber(1,0)),	"1")
								#self.assertEqual(str(ComplexNumber(1.0,0)),	"1.0")
								#self.assertEqual(str(ComplexNumber(0,1)),	"i")
								#self.assertEqual(str(ComplexNumber(0,0)),	"0")	

								
				def	test_log(self):
								c	=	ComplexNumber(1.0,1.0)
								l	=	c.log(math.e)
								self.assertAlmostEqual(l.real,	0.0,	delta=0.001)
								self.assertAlmostEqual(l.imaginary,	c.phase(),	delta=0.001)
								
				
				def	test_magnitude(self):
								self.assertAlmostEqual(ComplexNumber(3.0,4.0).magnitude(),5,	delta=0.001)													
			
								
				def	test_integer_equality(self):
								"""
												Note	all	other	tests	depend	on	this	test	!
												
												We	want	also	to	test	the	constructor,	so	in	c	we	set	stuff	by	hand				
								"""
								c	=	ComplexNumber(0,0)
								c.real	=	1							
								c.imaginary	=	2								
								self.assertEquals(c,	ComplexNumber(1,2))				
								
				def	test_isclose(self):
								"""		Notice	we	use	`assertTrue`	because	we	expect	`isclose`	to	return	a	`bool`	value,	
and	
													we	also	test	a	case	where	we	expect	`False`
								"""								
								self.assertTrue(ComplexNumber(1.0,1.0).isclose(ComplexNumber(1.0,1.1),	0.2))								
								self.assertFalse(ComplexNumber(1.0,1.0).isclose(ComplexNumber(10.0,10.0),	0.2))
								
				def	test_add_zero(self):
								self.assertEquals(ComplexNumber(1,2)	+	ComplexNumber(0,0),	ComplexNumber(1,2));
								
				def	test_add_numbers(self):								
								self.assertEquals(ComplexNumber(1,2)	+	ComplexNumber(3,4),	ComplexNumber(4,6));							
	

				def	test_add_scalar_right(self):								
								self.assertEquals(ComplexNumber(1,2)	+	3,	ComplexNumber(4,2));								

				def	test_add_scalar_left(self):								
								self.assertEquals(3	+	ComplexNumber(1,2),	ComplexNumber(4,2));								
								
				def	test_add_negative(self):

				def	test_add_negative(self):

								self.assertEquals(ComplexNumber(-1,0)	+	ComplexNumber(0,-1),	ComplexNumber(-1,-1));

				def	test_mul_by_zero(self):
								self.assertEquals(ComplexNumber(0,0)	*	ComplexNumber(1,2),	ComplexNumber(0,0));
								
				def	test_mul_just_real(self):
								self.assertEquals(ComplexNumber(1,0)	*	ComplexNumber(2,0),	ComplexNumber(2,0));

				def	test_mul_just_imaginary(self):
								self.assertEquals(ComplexNumber(0,1)	*	ComplexNumber(0,2),	ComplexNumber(-2,0));						
		

				def	test_mul_scalar_right(self):
								self.assertEquals(ComplexNumber(1,2)	*	3,	ComplexNumber(3,6));

				def	test_mul_scalar_left(self):
								self.assertEquals(3	*	ComplexNumber(1,2),	ComplexNumber(3,6));								

								
				

In	[59]:

	

