
Exam	Simulation
Scientific	Programming	Algolab	

Wednesday	21	Dec	2016

Introduction
This	is	just	an	exam	simulation.	If	you	don't	ship	it	or	do	a	poor	work,	you	lose	nothing.	If	you	make	a
good	work,	you	earn	nothing.
To	make	you	feel	more	comfortable,	all	what	you	produce	and	submission	process	will	be	completely
anonymous
Anonymous	doesn't	imply	private.	In	fact,	in	this	simulation,	the	work	will	be	made	public	and	corrections
will	be	public	as	well.	The	anonimity	means	your	work	and	corrections	won't	be	associated	to	your	name
or	student	id.
So	don't	put	your	name	or	id	number	around	in	the	files	;-)

Allowed	material
Real	exam	will	be	in	the	lab	with	restricted	internet	access.	You	will	only	be	able	to	access:

Sciprog	Algolab	website	(http://davidleoni.github.io/algolab)
Alberto	Montresor	slides	(http://cricca.disi.unitn.it/montresor/teaching/scientific-programming/)
Stefano	Teso	slides	(http://disi.unitn.it/~teso/courses/sciprog/index.html)
Python	2.7	documentation	(https://docs.python.org/2/)

In	particular,	Unittest	docs	(https://docs.python.org/2/library/unittest.html)
The	course	book	'Problem	Solving	with	Algorithms	and	Data	Structures	using	Python'
(http://interactivepython.org/runestone/static/pythonds/index.html)

You	won't	be	able	to	use	anything	else,	in	particular:

no	Google
no	StackOverflow

So	if	you	need	to	look	up	some	Python	function,	please	start	today	learning	how	to	search	documentation	using
the	search	functionality	on	Python	website.

Grading
We	need	still	need	to	define	a	grading	system	for	the	exam.	Here	we	just	put	provisional	rules.
Correct	implementations	with	the	required	complexity	grant	you	full	grade.
One	extra	point	can	be	earned	by	writing	stylish	code.	You	got	style	if	you:

do	not	infringe	the	Commandments	(index.html#Commandments)
write	pythonic	code	(http://docs.python-guide.org/en/latest/writing/style)
avoid	convoluted	code	like	i.e.

		if	x	>	5:
						return	True
		else:
						return	False

when	you	could	write	just

		return	x	>	5

Out[1]:
Algolab
(index.html#Chapters)

Exam	Simulation



For	example,	if	you	are	given	to	implement:

def	cool_fun(x):
								raise	Exception("TODO	implement	me")

and	you	ship	this	code:

def	cool_fun_non_working_trial(x):
				#	do	some	absurdity

def	cool_fun_a_perfectly_working_trial(x):
				#	a	super	fast,	correct	and	stylish	implementation

def	cool_fun(x):
				raise	Exception("TODO	implement	me")

We	will	assess	only	the	latter	one	cool_fun(x),	and	conclude	it	doesn't	work	at	all	:P	!!!!!!!

Still,	you	are	allowed	to	define	any	extra	helper	function	you	might	need.	If	your	cool_fun(x)	implementation
calls	some	other	function	you	defined	like	my_helper	here,	it	is	ok:

def	my_helper(y,z):
				#	do	something	useful

def	cool_fun(x):
				my_helper(x,5)

#	this	will	get	ignored:
def	some_trial(x):
				#	do	some	absurdity

What	to	do
1)	Download	this	zip	(exam-simulation/exam.zip)	and	extracts	its	contents	on	your	disk.	You	will	see	a	folder	like
this:

exam
|-	exercise1.py
|-	exercise2.py

2)	Edit	the	files	following	the	instructions	in	this	worksheet	for	each	exercise.

!!!!!!!!!	WARNING	!!!!!!!!!	

!!!!!!!!!	**ONLY**	IMPLEMENTATIONS	OF	THE	PROVIDED	FUNCTION	SIGNATURES
WILL	BE	EVALUATED	!!!!!!!!!	



3)	Every	exercise	should	take	max	25	mins.	If	it	takes	longer,	leave	it	and	try	another	exercise.

4)	When	you're	done,	proceed	with	the	submission

Submission
1)	Zip	your	files	into	a	file	named	exam.zip

2)	Upload	the	zip	to	file.io	(http://file.io)

(http://file.io)

2)	After	the	upload	you	should	see	a	download	link	(something	like	https://file.io/C40YFy)

3)	Copy	paste	the	link	into	the	common	ethercalc	here:

https://ethercalc.org/2sp752kuzqqy	(https://ethercalc.org/2sp752kuzqqy)

WARNING:	DON'T	modify	function	signatures!	Just	provide	the	implementation.

WARNING:	DON'T	change	the	existing	test	methods,	just	add	new	ones	!!!	You
can	add	as	many	as	you	want.

WARNING:	DON'T	create	other	files.	If	you	still	do	it,	they	won't	be	evaluated.

IMPORTANT:	Pay	close	attention	to	the	comments	of	the	functions.



Exercises

1)	insertion	sort
Insertion	sort	is	a	basic	sorting	algorithm.	This	animation	gives	you	an	idea	of	how	it	works:

Here	is	the	pseudo	code:

Start	editing	the	file	exercise1.py:

1.1)	insertion_sort
Implement	in	Python	the	pseudocode	for	insertion_sort.	Make	sure	at	least	the	provided	tests	pass	(they	won't
check	for	the	bug).

1.2)	Fixing	insertion_sort
We	said	the	given	pseudo	code	has	a	bug.	Write	additional	test	cases	that	show	where	the	bug	is,	and	then	fix
the	code	accordingly.

WARNING:	REMEMBER	TO	WRITE	SOMEWHERE	(IN	YOUR	COMPUTER	OR	ON
PAPER)	YOUR	DOWNLOAD	LINK,	OTHERWISE	IT	WILL	BE	HARD	FOR	YOU	TO
UNDERSTAND	WHICH	ZIP	WAS	CORRECTED.

WARNING:	The	following	pseudo	code	contains	a	bug	(just	one!).

IMPORTANT:	
Array	A	in	the	pseudo	code	has	indexes	starting	from	zero	included.	
n	is	the	length	of	the	input	array.



2)	UnorderedList
We	are	going	to	have	some	more	fun	with	good	old	UnorderedList,	which	is	a	monodirectional	linked	list.

Start	editing	the	file	exercise2.py:

2.1)	rev(self)
Implement	the	method	rev(self)	that	you	find	in	the	skeleton	and	check	provided	tests	pass.

2.2)	copy(self)
Implement	the	method	copy(self)	that	you	find	in	the	skeleton	and	check	provided	tests	pass.

WARNING:	DON'T	modify	function	signatures!	Just	provide	the	implementation.

WARNING:	DON'T	change	the	existing	test	methods,	just	add	new	ones	!!!	You
can	add	as	many	as	you	want.

IMPORTANT:	Pay	close	attention	to	the	comments	of	the	functions.


