
Lab	Midterm
Scientific	Programming	Algolab	

Friday	13th	Jan	2017

Introduction
This	midterm	makes	sense	only	if	you	passed	successfully	the	theory	midterm	by	Alberto	Montresor.	If
you	didn't,	you	can	still	stay	and	do	the	midterm	as	exercise,	but	it	won't	be	evaluated.
If	you	don't	ship	or	you	don't	pass	this	midterm,	you	lose	also	the	theory	midterm.
Log	into	your	computer	in	exam	mode,	it	should	start	Ubuntu
To	edit	the	files,	you	can	use	any	editor	of	your	choice.	Editra	seems	easy	to	use,	you	can	find	it	under
Applications->Programming->Editra.	Other	could	be	GEdit,	or	PyCharm	(more	complex).

Allowed	material
There	won't	be	any	internet	access.	You	will	only	be	able	to	access:

Sciprog	Algolab	worksheets	(index.html)
Alberto	Montresor	slides
(../montresor/Montresor%20sciprog/cricca.disi.unitn.it/montresor/teaching/scientific-
programming/slides/index.html)
Stefano	Teso	docs	(../teso/disi.unitn.it/_teso/courses/sciprog/index.html)
Python	2.7	documentation	:			html	(../python-docs/html/index.html)			pdf	(../python-docs/pdf)

In	particular,	Unittest	docs	(../python-docs/html/library/unittest.html))
The	course	book	Problem	Solving	with	Algorithms	and	Data	Structures	using	Python			html
(../pythonds/index.html)				pdf	(../pythonds/ProblemSolvingwithAlgorithmsandDataStructures.pdf)

Grading
The	grade	of	this	midterm	will	range	from	0	to	30.	Total	grade	for	the	module	will	be	given	by	the
average	with	the	theory	midterm	of	Alberto	Montresor.
Correct	implementations	with	the	required	complexity	grant	you	full	grade.
If	you	just	can't	solve	an	exercise,	try	to	solve	it	at	least	for	some	subcase	(i.e.	array	of	fixed	size	2)
commenting	why	you	did	so.	Doing	so	might	still	grant	you	a	few	points.
One	extra	point	can	be	earned	by	writing	stylish	code.	You	got	style	if	you:

do	not	infringe	the	Commandments	(../algolab/index.html#Commandments)
write	pythonic	code	(http://docs.python-guide.org/en/latest/writing/style)
avoid	convoluted	code	like	i.e.

		if	x	>	5:
						return	True
		else:
						return	False

when	you	could	write	just

		return	x	>	5

Out[1]:

!!!!!!!!!	WARNING	!!!!!!!!!	

!!!!!!!!!	**ONLY**	IMPLEMENTATIONS	OF	THE	PROVIDED	FUNCTION	SIGNATURES
WILL	BE	EVALUATED	!!!!!!!!!	

Algolab
(index.html#Chapters)

Lab	Midterm

For	example,	if	you	are	given	to	implement:

def	cool_fun(x):
								raise	Exception("TODO	implement	me")

and	you	ship	this	code:

def	cool_fun_non_working_trial(x):
				#	do	some	absurdity

def	cool_fun_a_perfectly_working_trial(x):
				#	a	super	fast,	correct	and	stylish	implementation

def	cool_fun(x):
				raise	Exception("TODO	implement	me")

We	will	assess	only	the	latter	one	cool_fun(x),	and	conclude	it	doesn't	work	at	all	:P	!!!!!!!

Still,	you	are	allowed	to	define	any	extra	helper	function	you	might	need.	If	your	cool_fun(x)	implementation
calls	some	other	function	you	defined	like	my_helper	here,	it	is	ok:

def	my_helper(y,z):
				#	do	something	useful

def	cool_fun(x):
				my_helper(x,5)

#	this	will	get	ignored:
def	some_trial(x):
				#	do	some	absurdity

What	to	do
In	/usr/local	you	should	find	somewhere	a	file	named	sciprog-midterm-17-01-13.zip.	Download	it	and
extract	it	in	a	new	folder	on	your	desktop.	The	content	should	be	like	this:

|-	docs
|-	algolab-17-01-13
				|-	exercise1.py
				|-	exercise2.py
				|-	exercise3.py
				|-	exercise4.py

Under	docs/	folder	you	will	find	the	slides	and	Python	documentation.

2)	Now,	take	the	folder	algolab-17-01-13	and	copy	it	to	/var/exam.

Rename	it	to	algolab-17-01-13-midterm-FIRSTNAME-LASTNAME-IDNUMBER	like	algolab-17-01-13-john-doe-
432432

From	now	on,	you	will	be	editing	the	files	in	that	folder.	At	the	end	of	the	exam,	that	is	what	will	be	evaluated.

3)	Edit	the	files	following	the	instructions	in	this	worksheet	for	each	exercise.

3)	Every	exercise	should	take	max	25	mins.	If	it	takes	longer,	leave	it	and	try	another	exercise.

Exercises

1)	quick	sort
Quick	sort	is	a	widely	used	sorting	algorithm	and	in	this	exercise	you	will	implement	it	following	the	pseudo	code.

IMPORTANT:	Array	A	in	the	pseudo	code	has	indexes	starting	from	zero	included

IMPORTANT:	The	functions	pivot	and	quicksort	operate	an	a	subarray	that	goes	from	indeces	
first	included	and	last	included

Start	editing	the	file	exercise1.py:

1.1)	swap

Implement	swap:

WARNING:	DON'T	modify	function	signatures!	Just	provide	the	implementation.

WARNING:	DON'T	change	the	existing	test	methods,	just	add	new	ones	!!!	You
can	add	as	many	as	you	want.

WARNING:	DON'T	create	other	files.	If	you	still	do	it,	they	won't	be	evaluated.

IMPORTANT:	Pay	close	attention	to	the	comments	of	the	functions.

IMPORTANT:	if	you	need	to	print	some	debugging	information,	you	are	allowed	to
put	extra	print	statements	in	the	function	bodies.

WARNING:	even	if	print	statements	are	allowed,	be	careful	with	prints	that
might	break	your	function,	i.e.	avoid	stuff	like	this:		print	1/0	

WARNING:	MAKE	SURE	ALL	EXERCISE	FILES	AT	LEAST	COMPILE	!!!	
10	MINS	BEFORE	THE	END	OF	THE	EXAM	I	WILL	ASK	YOU	TO	MAKE	SURE	OF	THIS
AND	TO	DO	A	FINAL	CLEAN	UP	OF	THE	CODE:

def	swap(A,	x,	y):
				"""
								In	the	array	A,	swaps	the	elements	at	indeces	x	and	y.
				"""
				raise	Exception("TODO	IMPLEMENT	ME!")

Once	done,	running	this	will	run	only	the	tests	in	SwapTest	class	and	hopefully	they	will	pass.

Notice	that	exercise1	is	followed	by	a	dot	and	test	class	name:	.SwapTest

python	-m	unittest	exercise1.SwapTest

1.2)	pivot
Implement	pivot	method:

def	pivot(A,	first,	last):
				"""	Modifies	in-place	the	slice	of	the	array	A	with	indeces	between	first	included	
								and	last	included.	Returns	the	new	pivot	index.

				"""
				raise	Exception("TODO	IMPLEMENT	ME!")

You	can	run	tests	only	for	pivot	with	this	command:

python	-m	unittest	exercise1.PivotTest

1.3)	implement	quicksort	and	qs
Implement	quicksort	and	qs	method:

def	quicksort(A,	first,	last):
				"""
								Sorts	in-place	the	slice	of	the	array	A	with	indeces	between	first	included
								and	last	included.
				"""
				raise	Exception("TODO	IMPLEMENT	ME	!")

def	qs(A):
				"""
								Sorts	in-place	the	array	A	by	calling	quicksort	function	on	the	full	array.
				"""
				raise	Exception("TODO	IMPLEMENT	ME	!")

You	can	run	tests	only	for	both	quicksort	and	qs	with	this	command:

python	-m	unittest	exercise1.QuicksortTest

2)	CappedStack

In	class	you	implemented	a	CappedStack	that	had	a	fixed	cap.	In	this	exercise,	you	will	implement	a	way	to
change	the	cap	after	that	a	stack	instance	has	been	created.

NOTE:	On	some	condition,	you	will	be	requested	to	raise	IndexError.	To	do	so,	just	write:

raise	IndexError("Error!")

Proceed	with	the	following	point	and	start	editing	the	file	exercise2.py

size

cap

1

2

3

4

5 size
cap

1

2

3

4

5

1

2

3

4

5

discarded

size
cap

2.1)	peekn
Implement	the	peekn	method:

def	peekn(self,	n):
								"""
												Returns	a	list	with	the	n	top	elements,	in	the	order	in	which	they
												were	pushed.	For	example,	if	the	stack	is	the	following:	

																e
																d
																c
																b
																a

												peekn(3)	will	return	the	list	['c','d','e']

												If	there	aren't	enough	element	to	peek,	raises	IndexError
												If	n	is	negative,	raises	an	IndexError

								"""
								raise	Exception("TODO	IMPLEMENT	ME!")

2.2)	popn
Implement	the	popn	method:

def	popn(self,	n):
								"""	Pops	the	top	n	elements,	and	return	them	as	a	list,	in	the	order	in	
												which	they	where	pushed.	For	example,	with	the	following	stack:

																e
																d
																c
																b
																a

												popn(3)

												will	give	back	['c','d','e'],	and	stack	will	become:

																b
																a

												If	there	aren't	enough	element	to	pop,	raises	an	IndexError
												If	n	is	negative,	raises	an	IndexError
								"""

2.3)	set_cap
Implement	the	set_cap	method:

def	set_cap(self,	cap):
								"""	Sets	the	cap	value	to	the	provided	cap.	

												If	the	cap	is	less	then	the	stack	size,	all	the	elements	above	
												the	cap	are	removed	from	the	stack.

												If	cap	<	1,	raises	an	IndexError
												Does	*not*	return	anything!

												For	example,	with	the	following	stack,	and	cap	at	position	7:

												cap	->		7
																				6
																				5		e
																				4		d
																				3		c
																				2		b
																				1		a

												calling	method	set_cap(3)	will	change	the	stack	to	this:

												cap	->		3		c
																				2		b
																				1		a																																

								"""
				raise	Exception("TODO	IMPLEMENT	ME")

3)	UnorderedList
Let's	work	on	UnorderedList,	which	is	a	monodirectional	linked	list.

Start	editing	the	file	exercise3.py

3.1)	occurrences
Implement	this	method:

def	occurrences(self,	item):
								"""	
												Returns	the	number	of	occurrences	of	item	in	the	list.
								"""

Examples:

In	[6]:

print	ul.occurrences('a')

In	[7]:

print	ul.occurrences('c')

In	[8]:

print	ul.occurrences('z')

3.2)	shrink

Implement	this	method	in	UnorderedList	class:

def	shrink(self):
								"""	
												Removes	from	this	UnorderedList	all	nodes	at	odd	indeces	(1,	3,	5,	...),	
												supposing	that	the	first	node	has	index	zero,	the	second	node	
												has	index	one,	and	so	on.	

												So	if	the	UnorderedList	is	
																'a','b','c','d','e'	
												a	call	to	shrink	will	transform	the	UnorderedList	into	
																'a','c','e'

												Must	execute	in	O(n)	where	'n'	is	the	length	of	the	list.
												Does	*not*	return	anything.
								"""
								raise	Exception("TODO	IMPLEMENT	ME!")

In	[9]:

ul	=	UnorderedList()
ul.add('e')
ul.add('d')
ul.add('c')
ul.add('b')
ul.add('a')
print	ul

UnorderedList:	a,b,c,a

2

1

0

UnorderedList:	a,b,c,d,e

In	[10]:

ul.shrink()
print	ul

4)	GenericTree
In	these	exercises	with	a	tree,	you	will	be	visiting	a	generic	tree	in	various	ways.

UnorderedList:	a,c,e

4.1)	zig
The	method	zig	must	return	as	output	a	list	of	data	of	the	root	and	all	the	nodes	in	the	chain	of	child	attributes.
Basically,	you	just	have	to	follow	the	red	lines	and	gather	data	in	a	list,	until	there	are	no	more	red	lines	to	follow.
For	example,	in	the	labeled	tree	in	the	image,	these	would	be	the	results	of	calling	zig	on	various	nodes:

From	a:	['a','b',	'e']
From	b:	['b',	'e']
From	c:	['c',	'g']
From	h:	['h']
From	q:	['h']

4.2)	zag
This	function	is	quite	similar	to	zig,	but	this	time	it	gathers	data	going	right,	along	the	sibling	arrows.	For
example,	in	the	labeled	tree	in	the	image,	these	would	be	the	results	of	calling	zag	on	various	nodes:

From	a	:	['a']
From	b	:	['b',	'c',	'd']
From	o	:	['o',	'p']

4.3)	zigzag
If	you	arrived	so	far	and	some	unit	test	for	previous	exercises	(1,2,3,4)	are	still	failing,	it's	probably	more
convenient	to	try	to	fix	it.	On	the	other	hand,	if	everything	is	working	fine,	you	should	proceed	with	this	slightly
challanging	exercise!

As	you	are	surely	thinking,	zig	and	zag	alone	are	boring.	So	let's	mix	the	concepts,	and	go	zigzaging.	This	time
you	will	write	a	function	zigzag,	that	first	zigs	collecting	data	along	the	child	vertical	red	chain	as	much	as	it	can.
Then,	if	the	last	node	links	to	at	least	a	sibling,	the	method	continues	to	collect	data	along	the	siblings	horizontal
chain	as	much	as	it	can.	At	this	point,	if	it	finds	a	child,	it	goes	zigging	again	along	the	child	vertical	red	chain	as
much	as	it	can,	and	then	horizontal	zaging,	and	so	on.	It	continues	zig-zaging	like	this	until	it	reaches	a	node	that
has	no	child	nor	sibling:	when	this	happens	returns	the	list	of	data	found	so	far.	For	example,	these	would	be	the
results	of	calling	zigzag	on	various	nodes:

From	a:	['a',	'b',	'e',	'f',	'o']
From	c:	['c',	'g',	'h',	'i',	'q']	NOTE:	if	node	h	had	a	child	z,	the	process	would	still	proceed	to	i
From	d:	['d',	'm',	'n']
From	o:	['o',	'p']
From	n:	['n']

