
Algolab	Exam
Scientific	Programming	Module	2	
Algorithms	and	Data	Structures	

Thusday	26th,	Jan	2017

Introduction
Taking	part	to	this	exam	erases	any	vote	you	had	before,	both	lab	and	theory
If	you	don't	ship	or	you	don't	pass	this	lab	part,	you	lose	also	the	theory	part.

Log	into	your	computer	in	exam	mode,	it	should	start	Ubuntu
To	edit	the	files,	you	can	use	any	editor	of	your	choice:	Editra	seems	easy	to	use,	you	can	find	it	under
Applications->Programming->Editra.	Others	could	be	GEdit	(simpler),	or	PyCharm	(more	complex).

Allowed	material
There	won't	be	any	internet	access.	You	will	only	be	able	to	access:

Sciprog	Algolab	worksheets	(index.html)
Alberto	Montresor	slides
(../montresor/Montresor%20sciprog/cricca.disi.unitn.it/montresor/teaching/scientific-
programming/slides/index.html)
Stefano	Teso	docs	(../teso/disi.unitn.it/_teso/courses/sciprog/index.html)
Python	2.7	documentation	:			html	(../python-docs/html/index.html)			pdf	(../python-docs/pdf)

In	particular,	Unittest	docs	(../python-docs/html/library/unittest.html)
The	course	book	Problem	Solving	with	Algorithms	and	Data	Structures	using	Python			html
(../pythonds/index.html)				pdf	(../pythonds/ProblemSolvingwithAlgorithmsandDataStructures.pdf)

Grading
The	grade	of	this	lab	part	will	range	from	0	to	30.	Total	grade	for	the	module	will	be	given	by	the	average
with	the	theory	part	of	Alberto	Montresor.
Correct	implementations	with	the	required	complexity	grant	you	full	grade.
Partial	implementations	might	still	give	you	a	few	points.	If	you	just	can't	solve	an	exercise,	try	to	solve	it
at	least	for	some	subcase	(i.e.	array	of	fixed	size	2)	commenting	why	you	did	so.
One	bonus	point	can	be	earned	by	writing	stylish	code.	You	got	style	if	you:

do	not	infringe	the	Commandments	(../algolab/index.html#Commandments)
write	pythonic	code	(http://docs.python-guide.org/en/latest/writing/style)
avoid	convoluted	code	like	i.e.

		if	x	>	5:
						return	True
		else:
						return	False

when	you	could	write	just

		return	x	>	5

Out[1]:

!!!!!!!!!	WARNING	!!!!!!!!!	

!!!!!!!!!	**ONLY**	IMPLEMENTATIONS	OF	THE	PROVIDED	FUNCTION	SIGNATURES
WILL	BE	EVALUATED	!!!!!!!!!	

Algolab
(index.html#Chapters)

Algolab	Exam

For	example,	if	you	are	given	to	implement:

def	cool_fun(x):
								raise	Exception("TODO	implement	me")

and	you	ship	this	code:

def	cool_fun_non_working_trial(x):
				#	do	some	absurdity

def	cool_fun_a_perfectly_working_trial(x):
				#	a	super	fast,	correct	and	stylish	implementation

def	cool_fun(x):
				raise	Exception("TODO	implement	me")

We	will	assess	only	the	latter	one	cool_fun(x),	and	conclude	it	doesn't	work	at	all	:P	!!!!!!!

Still,	you	are	allowed	to	define	any	extra	helper	function	you	might	need.	If	your	cool_fun(x)	implementation
calls	some	other	function	you	defined	like	my_helper	here,	it	is	ok:

def	my_helper(y,z):
				#	do	something	useful

def	cool_fun(x):
				my_helper(x,5)

#	this	will	get	ignored:
def	some_trial(x):
				#	do	some	absurdity

What	to	do
In	/usr/local/esame	(/usr/local/esame)	you	should	find	a	file	named	algolab-17-01-26.zip.	Download	it	and
extract	it	on	your	desktop.	The	content	should	be	like	this:

algolab-17-01-26
				|-	FIRSTNAME-LASTNAME-ID
								|-	exercise1.py
								|-	exercise2.py
								|-	exercise3.py

2)	Check	this	folder	also	shows	under	/var/exam.

3)	Rename	FIRSTNAME-LASTNAME-ID	folder:	put	your	name,	lastname	an	id	number,	like	john-doe-432432

From	now	on,	you	will	be	editing	the	files	in	that	folder.	At	the	end	of	the	exam,	that	is	what	will	be	evaluated.

4)	Edit	the	files	following	the	instructions	in	this	worksheet	for	each	exercise.

3)	Every	exercise	should	take	max	25	mins.	If	it	takes	longer,	leave	it	and	try	another	exercise.

Exercises

1)	SwapArray
You	are	given	a	class	SwapArray	that	models	an	array	where	the	only	modification	you	can	do	is	to	swap	an
element	with	the	successive	one.

To	create	a	SwapArray,	just	call	it	passing	a	python	list:

In	[6]:

sarr	=	SwapArray([7,8,6])
print	sarr

Then	you	can	query	in	O(1)	it	by	calling	get()	and	get_last()

In	[7]:

print	sarr.get(0)

WARNING:	DON'T	modify	function	signatures!	Just	provide	the	implementation.

WARNING:	DON'T	change	the	existing	test	methods,	just	add	new	ones	!!!	You
can	add	as	many	as	you	want.

WARNING:	DON'T	create	other	files.	If	you	still	do	it,	they	won't	be	evaluated.

IMPORTANT:	Pay	close	attention	to	the	comments	of	the	functions.

IMPORTANT:	if	you	need	to	print	some	debugging	information,	you	are	allowed	to
put	extra	print	statements	in	the	function	bodies.

WARNING:	even	if	print	statements	are	allowed,	be	careful	with	prints	that
might	break	your	function,	i.e.	avoid	stuff	like	this:		print	1/0	

WARNING:	MAKE	SURE	ALL	EXERCISE	FILES	AT	LEAST	COMPILE	!!!	
10	MINS	BEFORE	THE	END	OF	THE	EXAM	I	WILL	ASK	YOU	TO	DO	A	FINAL	CLEAN
UP	OF	THE	CODE

SwapArray:	[7,	8,	6]

7

In	[8]:

print	sarr.get(1)

In	[9]:

print	sarr.get_last()

You	can	know	the	size	in	O(1)	with	size()	method:

In	[10]:

print	sarr.size()

As	we	said,	the	only	modification	you	can	do	to	the	internal	array	is	to	call	swap_next	method:

def	swap_next(self,	i):
"""	Swaps	the	elements	at	indeces	i	and	i	+	1

												If	index	is	negative	or	greater	or	equal	of	the	last	index,	raises	
												an	IndexError

								"""

For	example:

In	[11]:

sarr	=	SwapArray([7,8,6,3])
print	sarr

In	[12]:

sarr.swap_next(2)
print	sarr

In	[13]:

sarr.swap_next(0)
print	sarr

8

6

3

SwapArray:	[7,	8,	6,	3]

SwapArray:	[7,	8,	3,	6]

SwapArray:	[8,	7,	3,	6]

Now	start	editing	the	file	exercise1.py:

1.0)	test	swap
To	check	your	environment	is	working	fine,	try	to	run	the	tests	for	the	sole	swap	method.	You	don't	need	to
implement	it,	the	tests	are	in	SwapTest	class	and	should	all	pass:

Notice	that	exercise1	is	followed	by	a	dot	and	test	class	name:	.SwapTest

python	-m	unittest	exercise1.SwapTest

1.1)	is_sorted
Implement	the	is_sorted	function,	which	is	a	function	external	to	the	class	SwapArray:

def	is_sorted(sarr):		
				"""	Returns	True	if	the	provided	SwapArray	sarr	is	sorted,	False	otherwise

								NOTE:	Here	you	are	a	user	of	SwapArray,	so	you	*MUST	NOT*	access
														directly	the	field	_arr.
				"""
				raise	Exception("TODO	IMPLEMENT	ME	!")

Once	done,	running	this	will	run	only	the	tests	in	IsSortedTest	class	and	hopefully	they	will	pass.

Notice	that	exercise1	is	followed	by	a	dot	and	test	class	name:	.IsSortedTest

python	-m	unittest	exercise1.IsSortedTest

Example	usage:

In	[14]:

print	is_sorted(SwapArray([8,5,6]))

In	[15]:

print	is_sorted(SwapArray([5,6,6,8]))

1.2)	max_to_right
Implement	max_to_right	function,	which	is	a	function	external	to	the	class	SwapArray.	There	are	two	ways	to
implement	it,	try	to	minimize	the	reads	from	the	SwapArray.

def	max_to_right(sarr):
				"""	Modifies	the	provided	SwapArray	sarr	so	that	its	biggest	element	is
								moved	to	the	last	index.	The	order	in	which	the	other	elements	will	be
								after	a	call	to	this	function	is	left	unspecified	(so	it	could	be	any).

								NOTE:	Here	you	are	a	user	of	SwapArray,	so	you	*MUST	NOT*	access
														directly	the	field	_arr.	To	do	changes,	you	can	only	use	
														the	method	swap(self,	i).														
				"""
				raise	Exception("TODO	IMPLEMENT	ME	!")

Testing	:	python	-m	unittest	exercise1.MaxToRightTest

Example	usage:

In	[16]:

sarr	=	SwapArray([8,	7,	6])
print	sarr

False

True

SwapArray:	[8,	7,	6]

In	[17]:

max_to_right(sarr)
print	sarr

In	[18]:

sarr	=	SwapArray([6,8,6])
print	sarr

In	[19]:

max_to_right(sarr)
print	sarr

2)	DiGraph
Now	you	are	going	to	build	some	DiGraph,	by	defining	functions	external	to	class	DiGraph.

Start	editing	file	exercise2.py

2.1)	odd_line
Implement	the	function	odd_line.	Note	the	function	is	defined	outside	DiGraph	class.

def	odd_line(n):
				"""	Returns	a	DiGraph	with	n	verteces,	displaced	like	a	line	of	odd	numbers

								Each	vertex	is	an	odd	number	i,	for		1	<=	i	<	2n.	For	example,	for
								n=4	verteces	are	displaced	like	this:

								1	->	3	->	5	->	7

								For	n	=	0,	return	the	empty	graph

				"""
				raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise2.OddLineTest

Example	usage	:

In	[22]:

print	odd_line(0)

In	[23]:

print	odd_line(1)

SwapArray:	[7,	6,	8]

SwapArray:	[6,	8,	6]

SwapArray:	[6,	6,	8]

WARNING:	To	build	the	graphs,	just	use	the	methods	you	find	inside	DiGraph
class,	like	add_vertex,	add_edge,	etc.

DiGraph()

1:	[]

In	[24]:

print	odd_line(2)

In	[25]:

print	odd_line(3)

In	[26]:

print	odd_line(4)

2.2)	even_line
Implement	the	function	even_line.	Note	the	function	is	defined	outside	DiGraph	class.

def	even_line(n):
				"""	Returns	a	DiGraph	with	n	verteces,	displaced	like	a	line	of	even	numbers

								Each	vertex	is	an	even	number	i,	for		2	<=	i	<=	2n.	For	example,	for
								n=4	verteces	are	displaced	like	this:

								2	<-	4	<-	6	<-	8

								For	n	=	0,	return	the	empty	graph

				"""

				raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise2.EvenLineTest

Example	usage:

In	[27]:

print	even_line(0)

In	[28]:

print	even_line(1)

In	[29]:

print	even_line(2)

1:	[3]
3:	[]

1:	[3]
3:	[5]
5:	[]

1:	[3]
3:	[5]
5:	[7]
7:	[]

DiGraph()

2:	[]

2:	[]
4:	[2]

In	[30]:

print	even_line(3)

In	[31]:

print	even_line(4)

2.3)	quads
Implement	the	quads	function.	Note	the	function	is	defined	outside	DiGraph	class.

def	quads(n):
				"""	Returns	a	DiGraph	with	2n	verteces,	displaced	like	a	strip	of	quads.

								Each	vertex	is	a	number	i,		1	<=	i	<=	2n.	
								For	example,	for	n	=	4,	verteces	are	displaced	like	this:

								1	->	3	->	5	->	7
								^				|				^				|
								|				;				|				;
								2	<-	4	<-	6	<-	8

								where	

										^																																									|
										|		represents	an	upward	arrow,			while				;		represents	a	downward	arrow						
		

				"""
				raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise2.QuadsTest

Example	usage:

In	[32]:

print	quads(0)

In	[33]:

print	quads(1)

In	[34]:

print	quads(2)

2:	[]
4:	[2]
6:	[4]

2:	[]
4:	[2]
6:	[4]
8:	[6]

DiGraph()

1:	[]
2:	[1]

1:	[3]
2:	[1]
3:	[4]
4:	[2]

In	[35]:

print	quads(3)

In	[36]:

print	quads(4)

3)	GenericTree
In	this	exercise	you	will	deal	with	family	matters,	using	the	GenericTree	we	saw	during	labs:

Now	start	editing	the	file	exercise3.py:

3.1)	grandchildren
Implement	the	grandchildren	method:

1:	[3]
2:	[1]
3:	[5,	4]
4:	[2]
5:	[]
6:	[4,	5]

1:	[3]
2:	[1]
3:	[5,	4]
4:	[2]
5:	[7]
6:	[4,	5]
7:	[8]
8:	[6]

def	grandchildren(self):
								"""	Returns	a	python	list	containing	the	data	of	all	the	grandchildren	of	this
												node.

												-	Data	must	be	from	left	to	right	order	in	the	tree	horizontal	representatio
n	
														(or	up	to	down	in	the	vertical	representation).	
												-	If	there	are	no	grandchildren,	returns	an	empty	array.

												For	example,	for	this	tree:

												a
												|-b
												|	|-c
												|	\-d
												|			\-g
												|-e
												\-f
														\-h		

												Returns	['c','d','h']
								"""	
								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise3.GrandChildrenTest

Usage	examples:

In	[38]:

ta	=	gt('a',	gt('b',	gt('c')))
print	ta

In	[39]:

print	ta.grandchildren()

In	[40]:

ta	=	gt('a',	gt('b'))
print	ta

In	[41]:

print	ta.grandchildren()

In	[42]:

ta	=	gt('a',	gt('b',	gt('c'),	gt('d')),	gt('e',	gt('f')))
print	ta

a
\-b
		\-c

['c']

a
\-b

[]

a
|-b
|	|-c
|	\-d
\-e
		\-f

In	[43]:

print	ta.grandchildren()

3.2)	uncles
Implement	the	uncles	method:

def	uncles(self):
								"""	Returns	a	python	list	containing	the	data	of	all	the	uncles	of	this
												node	(that	is,	*all*	the	siblings	of	its	parent).

												NOTE:	returns	also	the	father	siblings	which	are	*BEFORE*	the	father	!!	

												-	Data	must	be	from	left	to	right	order	in	the	tree	horizontal	representatio
n	
														(or	up	to	down	in	the	vertical	representation).	
												-	If	there	are	no	uncles,	returns	an	empty	array.

												For	example,	for	this	tree:

												a
												|-b
												|	|-c
												|	\-d
												|			\-g
												|-e
														\-h		
												\-f

												calling	this	method	on	'h'	returns	['b','f']
								"""

Testing:	python	-m	unittest	exercise3.UnclesTest

Example	usages:

In	[44]:

td	=	gt('d')
tb	=	gt('b')
ta	=	gt('a',	tb,		gt('c',	td),	gt('e'))
print	ta

In	[45]:

print	td.uncles()

In	[46]:

print	tb.uncles()

['c',	'd',	'f']

a
|-b
|-c
|	\-d
\-e

['b',	'e']

[]

