
Algolab	Exam
Scientific	Programming	Module	2	
Algorithms	and	Data	Structures	

Thusday	16th,	Feb	2017

Introduction
Taking	part	to	this	exam	erases	any	vote	you	had	before,	both	lab	and	theory
If	you	don't	ship	or	you	don't	pass	this	lab	part,	you	lose	also	the	theory	part.

Log	into	your	computer	in	exam	mode,	it	should	start	Ubuntu
To	edit	the	files,	you	can	use	any	editor	of	your	choice:	Editra	seems	easy	to	use,	you	can	find	it	under
Applications->Programming->Editra.	Others	could	be	GEdit	(simpler),	or	PyCharm	(more	complex).

Allowed	material
There	won't	be	any	internet	access.	You	will	only	be	able	to	access:

Sciprog	Algolab	worksheets	(index.html)
Alberto	Montresor	slides
(../montresor/Montresor%20sciprog/cricca.disi.unitn.it/montresor/teaching/scientific-
programming/slides/index.html)
Stefano	Teso	docs	(../teso/disi.unitn.it/_teso/courses/sciprog/index.html)
Python	2.7	documentation	:			html	(../python-docs/html/index.html)			pdf	(../python-docs/pdf)

In	particular,	Unittest	docs	(../python-docs/html/library/unittest.html)
The	course	book	Problem	Solving	with	Algorithms	and	Data	Structures	using	Python			html
(../pythonds/index.html)				pdf	(../pythonds/ProblemSolvingwithAlgorithmsandDataStructures.pdf)

Grading
The	grade	of	this	lab	part	will	range	from	0	to	30.	Total	grade	for	the	module	will	be	given	by	the	average
with	the	theory	part	of	Alberto	Montresor.
Correct	implementations	with	the	required	complexity	grant	you	full	grade.
Partial	implementations	might	still	give	you	a	few	points.	If	you	just	can't	solve	an	exercise,	try	to	solve	it
at	least	for	some	subcase	(i.e.	array	of	fixed	size	2)	commenting	why	you	did	so.
One	bonus	point	can	be	earned	by	writing	stylish	code.	You	got	style	if	you:

do	not	infringe	the	Commandments	(../algolab/index.html#Commandments)
write	pythonic	code	(http://docs.python-guide.org/en/latest/writing/style)
avoid	convoluted	code	like	i.e.

		if	x	>	5:
						return	True
		else:
						return	False

when	you	could	write	just

		return	x	>	5

Out[1]:

!!!!!!!!!	WARNING	!!!!!!!!!	

!!!!!!!!!	**ONLY**	IMPLEMENTATIONS	OF	THE	PROVIDED	FUNCTION	SIGNATURES
WILL	BE	EVALUATED	!!!!!!!!!	

Algolab
(index.html#Chapters)

Algolab	Exam

For	example,	if	you	are	given	to	implement:

def	cool_fun(x):
								raise	Exception("TODO	implement	me")

and	you	ship	this	code:

def	cool_fun_non_working_trial(x):
				#	do	some	absurdity

def	cool_fun_a_perfectly_working_trial(x):
				#	a	super	fast,	correct	and	stylish	implementation

def	cool_fun(x):
				raise	Exception("TODO	implement	me")

We	will	assess	only	the	latter	one	cool_fun(x),	and	conclude	it	doesn't	work	at	all	:P	!!!!!!!

Still,	you	are	allowed	to	define	any	extra	helper	function	you	might	need.	If	your	cool_fun(x)	implementation
calls	some	other	function	you	defined	like	my_helper	here,	it	is	ok:

def	my_helper(y,z):
				#	do	something	useful

def	cool_fun(x):
				my_helper(x,5)

#	this	will	get	ignored:
def	some_trial(x):
				#	do	some	absurdity

What	to	do
In	/usr/local/esame	(/usr/local/esame)	you	should	find	a	file	named	algolab-17-01-26.zip.	Download	it	and
extract	it	on	your	desktop.	The	content	should	be	like	this:

algolab-17-01-26
				|-	FIRSTNAME-LASTNAME-ID
								|-	exercise1-slow.py
								|-	exercise1-fast.py
								|-	exercise2.py
								|-	exercise3.py

2)	Check	this	folder	also	shows	under	/var/exam.

3)	Rename	FIRSTNAME-LASTNAME-ID	folder:	put	your	name,	lastname	an	id	number,	like	john-doe-432432

From	now	on,	you	will	be	editing	the	files	in	that	folder.	At	the	end	of	the	exam,	that	is	what	will	be	evaluated.

4)	Edit	the	files	following	the	instructions	in	this	worksheet	for	each	exercise.

3)	Every	exercise	should	take	max	25	mins.	If	it	takes	longer,	leave	it	and	try	another	exercise.

1)	BoolStack
You	are	given	a	class	BoolStack	that	models	a	simple	stack.	This	stack	is	similar	to	the	CappedStack	you	already
saw	in	class,	the	only	differences	being:

it	can	only	contain	booleans,	trying	to	put	other	type	of	values	will	raise	a	ValueError
trying	to	pop	or	peek	an	empty	stack	will	raise	an	IndexError
there	is	no	cap

To	create	a	BoolStack,	just	call	it:

In	[6]:

bs	=	BoolStack()
print	bs

In	[7]:

bs.push(True)

In	[8]:

print	bs

WARNING:	DON'T	modify	function	signatures!	Just	provide	the	implementation.

WARNING:	DON'T	change	the	existing	test	methods,	just	add	new	ones	!!!	You
can	add	as	many	as	you	want.

WARNING:	DON'T	create	other	files.	If	you	still	do	it,	they	won't	be	evaluated.

IMPORTANT:	Pay	close	attention	to	the	comments	of	the	functions.

IMPORTANT:	if	you	need	to	print	some	debugging	information,	you	are	allowed	to
put	extra	print	statements	in	the	function	bodies.

WARNING:	even	if	print	statements	are	allowed,	be	careful	with	prints	that
might	break	your	function,	i.e.	avoid	stuff	like	this:		print	1/0	

WARNING:	MAKE	SURE	ALL	EXERCISE	FILES	AT	LEAST	COMPILE	!!!	
10	MINS	BEFORE	THE	END	OF	THE	EXAM	I	WILL	ASK	YOU	TO	DO	A	FINAL	CLEAN
UP	OF	THE	CODE

BoolStack:			elements=[]

BoolStack:			elements=[True]

In	[9]:

bs.push(False)

In	[10]:

print	bs

In	[11]:

print	bs.pop()

In	[12]:

print	bs

In	[13]:

print	bs.pop()

In	[14]:

print	bs

1.0)	test	BoolStack
Now	start	editing	the	file	exercise1_slow.py.	To	check	your	environment	is	working	fine,	try	to	run	the	tests	for	
BoolStackTest,	which	contain	tests	for	the	already	implemented	methods	pop,	push,	etc	...

Notice	that	exercise1_slow	is	followed	by	a	dot	and	test	class	name:	.BoolStackTest

python	-m	unittest	exercise1_slow.BoolStackTest

1.1)	true_count,	slow	version
Implement	the	true_count	method	inside	the	class,	just	working	on	this	method	alone:

def	true_count(self):
				"""	Return	the	number	of	elements	which	are	True	in	O(n),	where	n	is	the	size	of	sta
ck.		"""

				raise	Exception("TODO	IMPLEMENT	ME	!")

Testing

Once	done,	running	this	will	run	only	the	tests	in	TrueCountTest	class	and	hopefully	they	will	pass.

Notice	that	exercise1_slow	is	followed	by	a	dot	and	test	class	name	.TrueCountTest	:

python	-m	unittest	exercise1_slow.TrueCountTest

BoolStack:			elements=[True,	False]

False

BoolStack:			elements=[True]

True

BoolStack:			elements=[]

1.2)	true_count,	fast	version
Now	start	editing	the	file	exercise1_fast.py:	inside	you	will	find	the	class	FastBoolStack.	Your	goal	now	is	to
implement	a	true_count	method	that	works	in	O(1).	To	make	this	possible,	you	are	allowed	to	add	any	field	you
want	in	the	constructor	and	you	can	also	change	any	other	method	you	deem	necessary	(like	push)	.

def	true_count(self):
								"""	Return	the	number	of	elements	which	are	True	

												***			MUST	EXECUTE	IN	O(1)		***
								"""
								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing	:

Tests	for	push,	pop,	etc:

python	-m	unittest	exercise1_fast.FastBoolStackTest

Tests	just	for	true_count:

python	-m	unittest	exercise1_fast.TrueCountTest

2)	UnorderedList
Start	editing	file	exercise2.py,	which	contains	a	simplified	versioned	of	the	UnorderedList	we	saw	in	the	labs.

2.1)	dup_first
Implement	the	method	dup_first:

def	dup_first(self):
								"""	Modifies	this	list	by	adding	a	duplicate	of	first	node	right	after	it.	

												For	example,	the	list	'a','b','c'	should	become	'a','a','b','c'.												
												An	empty	list	remains	unmodified.												

												**	DOES	NOT	RETURN	ANYTHING	!!!	**										

								"""

								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise2.DupFirstTest

WARNING:	Since	you	are	going	to	modify	the	whole	class,	make	sure	tests	pass
BOTH	for	FastBoolStackTest	AND	TrueCountTest	!

2.2)	dup_all
Implement	the	method	dup_all:

def	dup_all(self):
								"""	Modifies	this	list	by	adding	a	duplicate	of	each	node	right	after	it.

												For	example,	the	list	'a','b','c'	should	become	'a','a','b','b','c','c'.
												An	empty	list	remains	unmodified.						

												**	MUST	PERFORM	IN	O(n)	WHERE	n	is	the	length	of	the	list.	**

												**	DOES	NOT	RETURN	ANYTHING	!!!	**
								"""

								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise2.DupAllTest

3)	DiGraph
Now	you	are	going	to	build	some	DiGraph,	by	defining	functions	external	to	class	DiGraph.

Start	editing	file	exercise3.py

3.1)	pie

Implement	the	function	pie.	Note	the	function	is	defined	outside	DiGraph	class.

"""
								Returns	a	DiGraph	with	n+1	verteces,	displaced	like	a	polygon	with	a	perimeter	
								of	n	verteces	progressively	numbered	from	1	to	n.	
								A	central	vertex	numbered	zero	has	outgoing	edges	to	all	other	verteces.

								For	n	=	0,	return	the	empty	graph.
								For	n	=	1,	return	vertex	zero	connected	to	node	1,	and	node	1	has	a	self-loop.

				"""
				raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise3.PieTest

Example	usage	:

For	n=5,	the	function	creates	this	graph:

In	[28]:

print	pie(5)

WARNING:	To	build	the	graphs,	just	use	the	methods	you	find	inside	DiGraph
class,	like	add_vertex,	add_edge,	etc.

0:	[1,	2,	3,	4,	5]
1:	[2]
2:	[3]
3:	[4]
4:	[5]
5:	[1]

1

2

34

5
0

Degenerate	cases:

In	[29]:

print	pie(0)

In	[30]:

print	pie(1)

3.2)	Flux	Capacitor
A	Flux	Capacitor	is	a	plutonium-powered	device	that	enables	time	travelling.	During	the	80s	it	was	installed	on	a
Delorean	car	and	successfully	used	to	ride	humans	back	and	forth	across	centuries:

In	this	exercise	you	will	build	a	Flux	Capacitor	model	as	a	Y-shaped	DiGraph,	created	according	to	a	parameter	
depth.	Here	you	see	examples	at	different	depths:

DiGraph()

0:	[1]
1:	[1]

Out[31]:

2

3

1

0

54

6

2

3

1

0

54

6

7 8

9

DEPTH	1

2

3

1

0

DEPTH	2 DEPTH	3DEPTH	0

Implement	the	function	flux.	Note	the	function	is	defined	outside	DiGraph	class:

def	flux(depth):
				"""	Returns	a	DiGraph	with	1	+	(d	*	3)	numbered	verteces	displaced	like	a	Flux	Capac
itor:

								-	from	a	central	node	numbered	0,	three	branches	depart		
								-	all	edges	are	directed	outward
								-	on	each	branch	there	are	'depth'	verteces.	

								For	example,	for	depth=2	we	get	the	following	graph	(suppose	arrows	point	outwar
d):

													4									5
														\							/
															1					2
																\			/
																		0
																		|
																		3
																		|
																		6

				"""
				raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise3.FluxTest

Usage	examples

In	[33]:

print	flux(0)

In	[34]:

print	flux(1)

DiGraph()

0:	[1,	2,	3]
1:	[]
2:	[]
3:	[]

In	[35]:

print	flux(2)

In	[36]:

print	flux(3)

0:	[1,	2,	3]
1:	[4]
2:	[5]
3:	[6]
4:	[]
5:	[]
6:	[]

0:	[1,	2,	3]
1:	[4]
2:	[5]
3:	[6]
4:	[7]
5:	[8]
6:	[9]
7:	[]
8:	[]
9:	[]

