
Algolab	Exam
Scientific	Programming	Module	2	
Algorithms	and	Data	Structures	

Thursday	8th,	June	2017

Introduction
Taking	part	to	this	exam	erases	any	vote	you	had	before,	both	lab	and	theory
If	you	don't	ship	or	you	don't	pass	this	lab	part,	you	lose	also	the	theory	part.

Log	into	your	computer	in	exam	mode,	it	should	start	Ubuntu
To	edit	the	files,	you	can	use	any	editor	of	your	choice:	Editra	seems	easy	to	use,	you	can	find	it	under
Applications->Programming->Editra.	Others	could	be	GEdit	(simpler),	or	PyCharm	(more	complex).

Allowed	material
There	won't	be	any	internet	access.	You	will	only	be	able	to	access:

Sciprog	Algolab	worksheets	(index.html)
Alberto	Montresor	slides
(../montresor/Montresor%20sciprog/cricca.disi.unitn.it/montresor/teaching/scientific-
programming/slides/index.html)
Stefano	Teso	docs	(../teso/disi.unitn.it/_teso/courses/sciprog/index.html)
Python	2.7	documentation	:			html	(../python-docs/html/index.html)			pdf	(../python-docs/pdf)

In	particular,	Unittest	docs	(../python-docs/html/library/unittest.html)
The	course	book	Problem	Solving	with	Algorithms	and	Data	Structures	using	Python			html
(../pythonds/index.html)				pdf	(../pythonds/ProblemSolvingwithAlgorithmsandDataStructures.pdf)

Grading
The	grade	of	this	lab	part	will	range	from	0	to	30.	Total	grade	for	the	module	will	be	given	by	the	average
with	the	theory	part	of	Alberto	Montresor.
Correct	implementations	with	the	required	complexity	grant	you	full	grade.
Partial	implementations	might	still	give	you	a	few	points.	If	you	just	can't	solve	an	exercise,	try	to	solve	it
at	least	for	some	subcase	(i.e.	array	of	fixed	size	2)	commenting	why	you	did	so.
One	bonus	point	can	be	earned	by	writing	stylish	code.	You	got	style	if	you:

do	not	infringe	the	Commandments	(../algolab/index.html#Commandments)
write	pythonic	code	(http://docs.python-guide.org/en/latest/writing/style)
avoid	convoluted	code	like	i.e.

		if	x	>	5:
						return	True
		else:
						return	False

when	you	could	write	just

		return	x	>	5

Out[1]:

!!!!!!!!!	WARNING	!!!!!!!!!	

!!!!!!!!!	**ONLY**	IMPLEMENTATIONS	OF	THE	PROVIDED	FUNCTION	SIGNATURES
WILL	BE	EVALUATED	!!!!!!!!!	

Algolab
(index.html#Chapters)

Algolab	Exam

For	example,	if	you	are	given	to	implement:

def	cool_fun(x):
								raise	Exception("TODO	implement	me")

and	you	ship	this	code:

def	cool_fun_non_working_trial(x):
				#	do	some	absurdity

def	cool_fun_a_perfectly_working_trial(x):
				#	a	super	fast,	correct	and	stylish	implementation

def	cool_fun(x):
				raise	Exception("TODO	implement	me")

We	will	assess	only	the	latter	one	cool_fun(x),	and	conclude	it	doesn't	work	at	all	:P	!!!!!!!

Still,	you	are	allowed	to	define	any	extra	helper	function	you	might	need.	If	your	cool_fun(x)	implementation
calls	some	other	function	you	defined	like	my_helper	here,	it	is	ok:

def	my_helper(y,z):
				#	do	something	useful

def	cool_fun(x):
				my_helper(x,5)

#	this	will	get	ignored:
def	some_trial(x):
				#	do	some	absurdity

What	to	do
In	/usr/local/esame	(/usr/local/esame)	you	should	find	a	file	named	algolab-17-06-08.zip.	Download	it	and
extract	it	on	your	desktop.	The	content	should	be	like	this:

algolab-17-06-08
				|-	FIRSTNAME-LASTNAME-ID
								|-	exercise1.py
								|-	exercise2.py
								|-	exercise3.py

2)	Check	this	folder	also	shows	under	/var/exam.	TODO

3)	Rename	FIRSTNAME-LASTNAME-ID	folder:	put	your	name,	lastname	an	id	number,	like	john-doe-432432

From	now	on,	you	will	be	editing	the	files	in	that	folder.	At	the	end	of	the	exam,	that	is	what	will	be	evaluated.

4)	Edit	the	files	following	the	instructions	in	this	worksheet	for	each	exercise.

3)	Every	exercise	should	take	max	25	mins.	If	it	takes	longer,	leave	it	and	try	another	exercise.

1)	SortedStack
You	are	given	a	class	SortedStack	that	models	a	simple	stack.	This	stack	is	similar	to	the	CappedStack	you
already	saw	in	class,	the	differences	being:

it	can	only	contain	integers,	trying	to	put	other	type	of	values	will	raise	a	ValueError
integers	must	be	inserted	sorted	in	the	stack,	either	ascending	or	descending
there	is	no	cap

			Example:

								Ascending:							Descending

											8																	3
											5																	5
											3																	8

To	create	a	SortedStack	sorted	in	ascending	order,	just	call	it	passing	True:

In	[6]:

s	=	SortedStack(True)
print	s

WARNING:	DON'T	modify	function	signatures!	Just	provide	the	implementation.

WARNING:	DON'T	change	the	existing	test	methods,	just	add	new	ones	!!!	You
can	add	as	many	as	you	want.

WARNING:	DON'T	create	other	files.	If	you	still	do	it,	they	won't	be	evaluated.

IMPORTANT:	Pay	close	attention	to	the	comments	of	the	functions.

IMPORTANT:	if	you	need	to	print	some	debugging	information,	you	are	allowed	to
put	extra	print	statements	in	the	function	bodies.

WARNING:	even	if	print	statements	are	allowed,	be	careful	with	prints	that
might	break	your	function,	i.e.	avoid	stuff	like	this:		print	1/0	

WARNING:	MAKE	SURE	ALL	EXERCISE	FILES	AT	LEAST	COMPILE	!!!	
10	MINS	BEFORE	THE	END	OF	THE	EXAM	I	WILL	ASK	YOU	TO	DO	A	FINAL	CLEAN
UP	OF	THE	CODE

SortedStack	(ascending):			elements=[]

In	[7]:

s.push(5)
print	s

In	[8]:

s.push(7)
print	s

In	[9]:

print	s.pop()

In	[10]:

print	s

In	[11]:

print	s.pop()

In	[12]:

print	s

For	descending	order,	pass	False	when	you	create	it:

In	[13]:

sd	=	SortedStack(False)
sd.push(7)
sd.push(5)
sd.push(4)
print(sd)

1.0)	test	SortedStack
Now	open	the	file	exercise1.py	andcheck	your	environment	is	working	fine,	by	trying	to	run	the	tests	only	for	
SortedStackTest,	which	tests	already	implemented	methods	like	pop,	push,	etc	...	:	these	tests	should	all	pass,
if	they	don't,	tell	your	instructor.

Notice	that	exercise1	is	followed	by	a	dot	and	test	class	name:	.SortedStackTest

python	-m	unittest	exercise1.SortedStackTest

SortedStack	(ascending):			elements=[5]

SortedStack	(ascending):			elements=[5,	7]

7

SortedStack	(ascending):			elements=[5]

5

SortedStack	(ascending):			elements=[]

SortedStack	(descending):			elements=[7,	5,	4]

1.1)	transfer
Now	implement	the	transfer	function.	NOTE:	function	is	external	to	class	SortedStack.

def	transfer(s):
				"""	Takes	as	input	a	SortedStack	s	(either	ascending	or	descending)	and	
								returns	a	new	SortedStack	with	the	same	elements	of	s,	but	in	reverse	order.	
								At	the	end	of	the	call	s	will	be	empty.

								Example:

												s							result

												2									5
												3									3
												5									2
				"""
				raise	Exception("TODO	IMPLEMENT	ME	!!")

Testing

Once	done,	running	this	will	run	only	the	tests	in	TransferTest	class	and	hopefully	they	will	pass.

Notice	that	exercise1	is	followed	by	a	dot	and	test	class	name	.TransferTest	:

python	-m	unittest	exercise1.TransferTest

1.2)	merge
Implement	following	merge	function.	NOTE:	function	is	external	to	class	SortedStack.

def	merge(s1,s2):
				"""	Takes	as	input	two	SortedStacks	having	both	ascending	order,	
							and	returns	a	new	SortedStack	sorted	in	descending	order,	which	will	be	the	sorte
d	merge	
							of	the	two	input	stacks.	MUST	run	in	O(n1	+	n2)	time,	where	n1	and	n2	are	s1	and	
s2	sizes.

							If	input	stacks	are	not	both	ascending,	raises	ValueError.
							At	the	end	of	the	call	the	input	stacks	will	be	empty.

							Example:

							s1	(asc)			s2	(asc)						result	(desc)

										5										7													2
										4										3													3
										2																								4
																																			5
																																			7

				"""			

				raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise1.MergeTest

2)	UnorderedList
Start	editing	file	exercise2.py,	which	contains	a	simplified	versioned	of	the	UnorderedList	we	saw	in	the	labs.

2.1)	panino
Implement	following	panino	function.	NOTE:	the	function	is	external	to	class	UnorderedList.

def	panino(lst):
				"""	Returns	a	new	UnorderedList	having	double	the	nodes	of	provided	lst
								First	nodes	will	have	same	elements	of	lst,	following	nodes	will	
								have	the	same	elements	but	in	reversed	order.

								For	example:

												>>>	panino(['a'])
												UnorderedList:	a,a												

												>>>	panino(['a','b'])
												UnorderedList:	a,b,b,a

												>>>	panino(['a','c','b'])
												UnorderedList:	a,c,b,b,c,a

				"""
				raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise2.PaninoTest

2.2)	norep
Implement	the	method	norep:

def	norep(self):
								"""	Removes	all	the	consecutive	repetitions	from	the	list.
												Must	perform	in	O(n),	where	n	is	the	list	size.

												For	example,	after	calling	norep:

												'a','a','b','c','c','c'			will	become		'a','b','c'

												'a','a','b','a'			will	become			'a','b','a'												

								"""

								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise2.NorepTest

3)	GenericTree
Start	editing	file	exercise3.py,	which	contains	a	simplified	versioned	of	the	GenericTree	we	saw	in	the	labs.

3.1)	ancestors
Implement	the	method	ancestors:

def	ancestors(self):
								"""	Return	the	ancestors	up	until	the	root	as	a	Python	list.													
												First	item	in	the	list	will	be	the	parent	of	this	node.

												NOTE:	this	function	return	the	*nodes*,	not	the	data.
								"""

								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise3.AncestorsTest

Examples:

-	ancestors	of	p:		f,	b,	a
-	ancestors	of	h:		c,	a
-	ancestors	of	a:		empty	list

3.2)	leftmost
Implement	the	method	leftmost:

def	leftmost(self):
								"""	
												Return	the	leftmost	node	of	the	root	of	this	node.	To	find	it,	from
												current	node	you	need	to	reach	the	root	of	the	tree	and	then	from	
												the	root	you	need	to	follow	the	_child	chain	until	a	node	with	no	children	i
s	found.

												If	self	is	already	the	root,	or	the	root	has	no	child,	raises	LookupError.

												NOTE:	this	function	return	a	*node*,	not	the	data.																

								"""

								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise3.LeftmostTest

Examples:

-	leftmost	of	p:		e
-	leftmost	of	h:		e
-	leftmost	of	e:		raise	LookupError

3.3)	common_ancestor
Implement	the	method	common_ancestor:

def	common_ancestor(self,	gt2):
								"""	Return	the	first	common	ancestor	of	current	node	and	the	provided	gt2	node
												If	gt2	is	not	a	node	of	the	same	tree,	raises	LookupError

												NOTE:	this	function	returns	a	*node*,	not	the	data.

												Ideally,	this	method	should	perform	in	O(h)	where	h	is	the	height	of	the	tre
e.
												(Hint:	you	should	use	a	Python	Set).	If	you	can't	figure	out	how	to	make	it	
												that	fast,	try	to	make	it	at	worst	O(h^2)

								"""								

								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise3.CommonAncestorTest

Examples:

-	common	ancestor	of	g	and	i:	c
-	common_ancestor	of	g	and	q:	c
-	common_ancestor	of	e	and	d:	a

