
Algolab	Exam
Scientific	Programming	Module	2	
Algorithms	and	Data	Structures	

Monday	4th,	September	2017

Introduction
Taking	part	to	this	exam	erases	any	vote	you	had	before,	both	lab	and	theory
If	you	don't	ship	or	don't	pass	this	lab	part,	you	lose	also	the	theory	part.

Allowed	material
There	won't	be	any	internet	access.	You	will	only	be	able	to	access:

Sciprog	Algolab	worksheets	(index.html)
Alberto	Montresor	slides
(../montresor/Montresor%20sciprog/cricca.disi.unitn.it/montresor/teaching/scientific-
programming/slides/index.html)
Stefano	Teso	docs	(../teso/disi.unitn.it/_teso/courses/sciprog/index.html)
Python	2.7	documentation	:			html	(../python-docs/html/index.html)			pdf	(../python-docs/pdf)

In	particular,	Unittest	docs	(../python-docs/html/library/unittest.html)
The	course	book	Problem	Solving	with	Algorithms	and	Data	Structures	using	Python			html
(../pythonds/index.html)				pdf	(../pythonds/ProblemSolvingwithAlgorithmsandDataStructures.pdf)

Grading
Lab	grade:	The	grade	of	this	lab	part	will	range	from	0	to	30.	Total	grade	for	the	module	will	be	given	by
the	average	with	the	theory	part	of	Alberto	Montresor.
Correct	implementations:	Correct	implementations	with	the	required	complexity	grant	you	full	grade.
Partial	implementations:	Partial	implementations	might	still	give	you	a	few	points.	If	you	just	can't
solve	an	exercise,	try	to	solve	it	at	least	for	some	subcase	(i.e.	array	of	fixed	size	2)	commenting	why	you
did	so.
Bonus	point:	One	bonus	point	can	be	earned	by	writing	stylish	code.	You	got	style	if	you:

do	not	infringe	the	Commandments	(../algolab/index.html#Commandments)
write	pythonic	code	(http://docs.python-guide.org/en/latest/writing/style)
avoid	convoluted	code	like	i.e.

		if	x	>	5:
						return	True
		else:
						return	False

when	you	could	write	just

		return	x	>	5

Valid	code

Out[1]:
Algolab
(index.html#Chapters)

Algolab	Exam

For	example,	if	you	are	given	to	implement:

def	f(x):
								raise	Exception("TODO	implement	me")

and	you	ship	this	code:

def	my_f(x):
				#	a	super	fast,	correct	and	stylish	implementation

def	f(x):
				raise	Exception("TODO	implement	me")

We	will	assess	only	the	latter	one	f(x),	and	conclude	it	doesn't	work	at	all	:P	!!!!!!!

Helper	functions

Still,	you	are	allowed	to	define	any	extra	helper	function	you	might	need.	If	your	f(x)	implementation	calls	some
other	function	you	defined	like	my_f	here,	it	is	ok:

#	Not	called	by	f,	will	get	ignored:
def	my_g(x):
				#	bla

#	Called	by	f,	will	be	graded:
def	my_f(y,z):
				#	bla

def	f(x):
				my_f(x,5)

How	to	edit
To	edit	the	files,	you	can	use	any	editor	of	your	choice:

Editra	editor	is	easy	to	use,	you	can	find	it	under	Applications->Programming->Editra.**
The	Terminal	to	run	python	can	be	found	in	Accessories	->	Terminal
Others	could	be	GEdit	(simpler),	or	PyCharm	(more	complex).

WARNING:	MAKE	SURE	ALL	EXERCISE	FILES	AT	LEAST	COMPILE	!!!	
10	MINS	BEFORE	THE	END	OF	THE	EXAM	I	WILL	ASK	YOU	TO	DO	A	FINAL	CLEAN
UP	OF	THE	CODE

!!!!!!!!!	WARNING	!!!!!!!!!	

!!!!!!!!!	**ONLY**	IMPLEMENTATIONS	OF	THE	PROVIDED	FUNCTION	SIGNATURES
WILL	BE	EVALUATED	!!!!!!!!!	

Debugging
If	you	need	to	print	some	debugging	information,	you	are	allowed	to	put	extra	print	statements	in	the	function
bodies.

What	to	do
1)	Download	algolab-2017-09-04.zip	(../algolab-2017-09-04.zip)	and	extract	it	on	your	desktop.	Folder	content
should	be	like	this:

algolab-2017-09-04
				|-	FIRSTNAME-LASTNAME-ID
								|-	exercise1.py
								|-	exercise2.py
								|-	exercise3.py

2)	Rename	FIRSTNAME-LASTNAME-ID	folder:	put	your	name,	lastname	an	id	number,	like	john-doe-432432

From	now	on,	you	will	be	editing	the	files	in	that	folder.	At	the	end	of	the	exam,	that	is	what	will	be	evaluated.

3)	Edit	the	files	following	the	instructions	in	this	worksheet	for	each	exercise.	Every	exercise	should	take	max	25
mins.	If	it	takes	longer,	leave	it	and	try	another	exercise.

IMPORTANT:	Pay	close	attention	to	the	comments	of	the	functions.

WARNING:	DON'T	modify	function	signatures!	Just	provide	the	implementation.

WARNING:	DON'T	change	the	existing	test	methods,	just	add	new	ones	!!!	You
can	add	as	many	as	you	want.

WARNING:	DON'T	create	other	files.	If	you	still	do	it,	they	won't	be	evaluated.

WARNING:	even	if	print	statements	are	allowed,	be	careful	with	prints	that
might	break	your	function!

For	example,	avoid	stuff	like	this:	
x	=	0	
print	1/x

1)	MultiSet
You	are	going	to	implement	a	class	called	MultiSet,	where	you	are	only	given	the	class	skeleton,	and	you	will
need	to	determine	which	Python	basic	datastructures	like	list,	set,	dict	(or	combinations	thereof)	is	best	suited	to
actually	hold	the	data.

In	math	a	multiset	(or	bag)	generalizes	a	set	by	allowing	multiple	instances	of	the	multiset's	elements.

The	multiplicity	of	an	element	is	the	number	of	instances	of	the	element	in	a	specific	multiset.

For	example:

The	multiset	a,	b	contains	only	elements	a	and	b,	each	having	multiplicity	1
In	multiset	a,	a,	b,	a	has	multiplicity	2	and	b	has	multiplicity	1
In	multiset	a,	a,	a,	b,	b,	b,	a	and	b	both	have	multiplicity	3

NOTE:	order	of	insertion	does	not	matter,	so	a,	a,	b	and	a,	b,	a	are	the	same	multiset,	where	a	has
multiplicity	2	and	b	has	multiplicity	1.

1.0)	run	EnvWorkingTest
Now	open	the	file	exercise1.py	and	check	your	environment	is	working	fine,	by	trying	to	run	the	test	
EnvWorkingTest:	it	should	always	pass,	if	it	doesn't,	tell	your	instructor.

Notice	that	exercise1	is	followed	by	a	dot	and	test	class	name:	.EnvWorkingTest

python	-m	unittest	exercise1.EnvWorkingTest

1.1)	__init__,	add	and	get
Now	implement	all	of	the	following	methods:	__init__,	add	and	get:

def	__init__(self):
								"""	Initializes	the	MultiSet	as	empty."""
								raise	Exception("TODO	IMPLEMENT	ME	!!!")

				def	add(self,	el):
								"""	Adds	one	instance	of	element	el	to	the	multiset	

												NOTE:	MUST	work	in	O(1)								
								"""
								raise	Exception("TODO	IMPLEMENT	ME	!!!")

				def	get(self,	el):
								"""	Returns	the	multiplicity	of	element	el	in	the	multiset.	

												If	no	instance	of	el	is	present,	return	0.

												NOTE:	MUST	work	in	O(1)								
								"""
								raise	Exception("TODO	IMPLEMENT	ME	!!!")

Testing

Once	done,	running	this	will	run	only	the	tests	in	AddGetTest	class	and	hopefully	they	will	pass.

Notice	that	exercise1	is	followed	by	a	dot	and	test	class	name	.AddGetTest	:

python	-m	unittest	exercise1.AddGetTest

1.2)	removen
Implement	the	following	removen	method:

def	removen(self,	el,	n):
								"""	Removes	n	instances	of	element	el	from	the	multiset	(that	is,	reduces	el	mul
tiplicity	by	n)

												If	n	is	negative,	raises	ValueError.												
												If	n	represents	a	multiplicity	bigger	than	the	current	multiplicity,	raises	
LookupError

												NOTE:	multiset	multiplicities	are	never	negative
												NOTE:	MUST	work	in	O(1)
								"""

								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise1.RemovenTest

2)	UnorderedList
Start	editing	file	exercise2.py,	which	contains	a	simplified	versioned	of	the	UnorderedList	we	saw	in	the	labs.

2.1)	find_couple
Implement	following	find_couple	method.

def	find_couple(self,a,b):
								"""	Search	the	list	for	the	first	two	consecutive	elements	having	data	equal	to	
												provided	a	and	b,	respectively.	If	such	elements	are	found,	the	position
												of	the	first	one	is	returned,	otherwise	raises	LookupError.

												-	MUST	run	in	O(n),	where	n	is	the	size	of	the	list.
												-	Returned	index	start	from	0	included

								"""																

								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise2.FindCoupleTest

2.2)	swap
Implement	the	method	swap:

def	swap	(self,	i,	j):
								"""
												Swap	the	data	of	nodes	at	index	i	and	j.	Indeces	start	from	0	included.
												If	any	of	the	indeces	is	out	of	bounds,	rises	IndexError.

												NOTE:	You	MUST	implement	this	function	with	a	single	scan	of	the	list.

								"""

								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise2.NorepTest

3)	GenericTree
Start	editing	file	exercise3.py,	which	contains	a	simplified	versioned	of	the	GenericTree	we	saw	in	the	labs.

3.1)	mirror
Implement	the	method	mirror:

def	mirror(self):
								"""	Modifies	this	tree	by	mirroring	it,	that	is,	reverses	the	order
												of	all	children	of	this	node	and	of	all	its	descendants

												-	MUST	work	in	O(n)	where	n	is	the	number	of	nodes
												-	MUST	change	the	order	of	nodes,	NOT	the	data	(so	don't	touch	the	data	!)
												-	DON'T	create	new	nodes												
												-	It	is	acceptable	to	use	a	recursive	method.

												Example:

												a					<-				Becomes:				a
												|-b																					|-i
												|	|-c																			|-e
												|	\-d																			|	|-h
												|-e																					|	|-g
												|	|-f																			|	\-f	
												|	|-g																			|-b
												|	\-h																					|-d
												\-i																							\-c

								"""

								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise3.MirrorTest

3.2)	clone
Implement	the	method	clone:

def	clone(self):
								"""	Clones	this	tree,	by	returning	an	*entirely*	new	tree	which	is	an	
												exact	copy	of	this	tree	(so	returned	node	and	*all*	its	descendants	must	be	
new).	

												-	MUST	run	in	O(n)	where	n	is	the	number	of	nodes
												-	a	recursive	method	is	acceptable.
								"""

								raise	Exception("TODO	IMPLEMENT	ME	!")

Testing:	python	-m	unittest	exercise3.CloneTest

