
Chapter	4:	Graphs

Graph	theory
See	Alberto	Montresor	theory	here:	http://disi.unitn.it/~montreso/sp/slides/06-grafi.pdf
(http://disi.unitn.it/~montreso/sp/slides/06-grafi.pdf)

See	Graphs	on	the	book	(https://interactivepython.org/runestone/static/pythonds/Graphs/toctree.html)

In	particular,	see	:

Vocabulary	and	definitions
(https://interactivepython.org/runestone/static/pythonds/Graphs/VocabularyandDefinitions.html)

To	keep	it	short,	a	graph	is	a	set	of	vertices	linked	by	edges.

Directed	graphs
In	this	worksheet	we	are	going	to	use	so	called	Directed	Graphs	(DiGraph	for	brevity),	that	is	graphs	that	have
directed	edges:	each	edge	can	be	pictured	as	an	arrow	linking	source	node	a	to	target	node	b.	With	such	an
arrow,	you	can	go	from	a	to	b	but	you	cannot	go	from	b	to	a	unless	there	is	another	edge	in	the	reverse	direction.

A	DiGraph	for	us	can	also	have	no	edges	or	no	verteces	at	all.
A	vertex	for	us	can	be	anything,	a	string	like	'abc',	the	number	3,	etc
In	our	model,	edges	simply	link	vertices	and	have	no	weights
The	DiGraph	is	represented	as	an	adjacency	list,	mapping	each	vertex	to	the	verteces	it	is	linked	to.

Serious	graphs
In	this	worksheet	we	follow	the	Do-It-Yourself	methodology	and	create	graph	classes	from	scratch	for	didactical
purposes.	Of	course,	in	Python	world	you	have	alread	nice	libraries	entirely	devoted	to	graphs	like	networkx
(https://networkx.github.io/),	you	can	also	use	them	for	visualizating	graphs.	If	you	have	huge	graphs	to	process
you	might	consider	big	data	tools	like	Spark	GraphX	(http://spark.apache.org/graphx/)	which	is	programmable	in
Python.

0)	Code	skeleton
First	off,	download	the	Python	skeleton	(graphs.py)	to	modify.	Solutions	are	in	a	separate	file
(graphs_solution.py).

1)	Building	graphs

Out[1]:

QUESTION:	DiGraph	model	is	thus	good	for	dense	or	sparse	graphs?

IMPORTANT:	All	the	functions	until	1.8	has_edge()	excluded	are	already	provided
and	you	don't	need	to	implement	them	!

Algolab
(index.html#Chapters)

Chapter	4:	Graphs



1.1)	Building	basics
Let's	look	at	the	constructor	__init__	and	add_vertex.	They	are	already	provided	and	you	don't	need	to
implement	it:

class	DiGraph:
				def	__init__(self):
								#	The	class	just	holds	the	dictionary	_edges:	as	keys	it	has	the	verteces,	and	
								#	to	each	vertex	associates	a	list	with	the	verteces	it	is	linked	to.

								self._edges	=	{}

				def	add_vertex(self,	vertex):
								"""	Adds	vertex	to	the	DiGraph.	A	vertex	can	be	any	object.

												If	the	vertex	already	exist,	does	nothing.
								"""
								if	vertex	not	in	self._edges:												
												self._edges[vertex]	=	[]

You	will	see	that	inside	it	just	initializes	_edges.	So	the	only	way	to	create	a	DiGraph	is	with	a	call	like

In	[4]:

g	=	DiGraph()

DiGraph	provides	an	__str__	method	to	have	a	nice	printout:

In	[5]:

print	g

You	can	add	then	vertices	to	the	graph	like	so:

In	[6]:

g.add_vertex('a')
g.add_vertex('b')
g.add_vertex('c')

In	[7]:

print	g

Adding	a	vertex	twice	does	nothing:

In	[8]:

g.add_vertex('a')
print	g

DiGraph()

a:	[]
b:	[]
c:	[]

a:	[]
b:	[]
c:	[]



Once	you	added	the	verteces,	you	can	start	adding	directed	edges	among	them	with	the	method	add_edge:

def	add_edge(self,	vertex1,	vertex2):
								"""	Adds	an	edge	to	the	graph,	from	vertex1	to	vertex2

												If	verteces	don't	exist,	raises	an	Exception.
												If	there	is	already	such	an	edge,	exits	silently.												
								"""

								if	not	vertex1	in	self._edges:
												raise	Exception("Couldn't	find	source	vertex:"	+	str(vertex1))

								if	not	vertex2	in	self._edges:
												raise	Exception("Couldn't	find	target	vertex:"	+	str(vertex2))								

								if	not	vertex2	in	self._edges[vertex1]:
												self._edges[vertex1].append(vertex2)

In	[9]:

g.add_edge('a',	'c')
print	g

In	[10]:

g.add_edge('a',	'b')
print	g

Adding	an	edge	twice	makes	no	difference:

In	[11]:

g.add_edge('a',	'b')
print	g

Notice	a	DiGraph	can	have	self-loops	too	(also	called	caps):

In	[12]:

g.add_edge('b',	'b')
print	g

a:	['c']
b:	[]
c:	[]

a:	['c',	'b']
b:	[]
c:	[]

a:	['c',	'b']
b:	[]
c:	[]

a:	['c',	'b']
b:	['b']
c:	[]



1.2)	dig()
dig()	is	a	shortcut	to	build	graphs,	it	is	already	provided	and	you	don't	need	to	implement	it.	USE	IT	ONLY
WHEN	TESTING,	NOT	IN	THE	DiGraph	CLASS	CODE	!!!!

With	no	parameter	prints	the	empty	graph:

In	[13]:

print	dig()

To	build	more	complex	graphs,	provide	pairs	source	vertex	/	target	verteces	list	like	in	the	following	examples:

In	[14]:

print	dig('a',['b','c'])

In	[15]:

print	dig('a',['b','c'],
										'b',	['b'],
										'c',	['a'])

1.3)	Equality
Graphs	for	us	are	equal	irrespectively	of	the	order	in	which	elements	in	adjacency	lists	are	specified.	So	for
example	these	two	graphs	will	be	considered	equal:

In	[16]:

dig('a',	['c',	'b'])	==	dig('a',	['b',	'c'])

DiGraph()

a:	['b',	'c']
b:	[]
c:	[]

a:	['b',	'c']
b:	['b']
c:	['a']

Out[16]:

True



1.4)	Basic	querying
There	are	some	provided	methods	to	query	the	DiGraph:	adj,	verteces,	is_empty

1.5)	adj
To	obtain	the	edges,	you	can	use	the	method	adj(self,	vertex).	It	is	already	provided	and	you	don't	need	to
implement	it:

def	adj(self,	vertex):
								"""	Returns	the	verteces	adjacent	to	vertex.	

												NOTE:	verteces	are	returned	in	a	NEW	list.
												Modifying	the	list	will	have	NO	effect	on	the	graph!
								"""
								if	not	vertex	in	self._edges:
												raise	Exception("Couldn't	find	a	vertex	"	+	str(vertex))

								return	self._edges[vertex][:]

In	[17]:

lst	=	dig('a',	['b',	'c'],
										'b',	['c']).adj('a')
print	lst

Let's	check	we	actually	get	back	a	new	list	(so	modifying	the	old	one	won't	change	the	graph):

In	[18]:

lst.append('d')
print	lst

In	[19]:

print	g.adj('a')

NOTE:	This	technique	of	giving	back	copies	is	also	called	defensive	copying:	it	prevents	users	from	modifying	the
internal	data	structures	of	a	class	instance	in	an	uncontrolled	manner.	For	example,	if	we	allowed	them	direct
access	to	the	internal	verteces	list,	they	could	add	duplicate	edges,	which	we	don't	allow	in	our	model.	If	instead
we	only	allow	users	to	add	edges	by	calling	add_edge,	we	are	sure	the	constraints	for	our	model	will	always
remain	satisfied.

1.6)	is_empty()
We	can	check	if	a	DiGraph	is	empty.	It	is	already	provided	and	you	don't	need	to	implement	it:

def	is_empty(self):
								"""		A	DiGraph	for	us	is	empty	if	it	has	no	verteces	and	no	edges	"""

								return	len(self._edges)	==	0

In	[20]:

print	dig().is_empty()

['b',	'c']

['b',	'c',	'd']

['c',	'b']

True



In	[21]:

print	dig('a',[]).is_empty()

1.7)	verteces()
To	obtain	the	verteces,	you	can	use	the	function	verteces.	(NOTE	for	Italians:	method	is	called	verteces,	with
two	es	!!!).	It	is	already	provided	and	you	don't	need	to	implement	it:

def	verteces(self):
								"""	Returns	a	set	of	the	graph	verteces.	Verteces	can	be	any	object.	"""

								#	Note	dict	keys()	return	a	list,	not	a	set.	Bleah.		
								#	See	http://stackoverflow.com/questions/13886129/why-does-pythons-dict-keys-ret
urn-a-list-and-not-a-set
								return	set(self._edges.keys())

In	[22]:

g	=	dig('a',	['c',	'b'],
										'b',	['c'])
print	g.verteces()

Notice	it	returns	a	set,	as	verteces	are	stored	as	keys	in	a	dictionary,	so	they	are	not	supposed	to	be	in	any
particular	order.	When	you	print	the	whole	graph	you	see	them	vertically	ordered	though,	for	clarity	purposes:

In	[23]:

print	g

Verteces	in	the	edges	list	are	instead	stored	and	displayed	in	the	order	in	which	they	were	inserted.

1.8)	has_edge
Enough	for	talking!	Implement	this	method	in	DiGraph:

def	has_edge(self,	source,	target):
								"""		Returns	True	if	there	is	an	edge	between	source	vertex	and	target	vertex.	
													Otherwise	returns	False.

												If	either	source,	target	or	both	verteces	don't	exist	raises	an	Exception.
								"""

								raise	Exception("TODO	IMPLEMENT	ME!")

1.9)	full_graph
Implement	this	function	outside	the	class	definition.	It	is	not	a	method	of	DiGraph	!

def	full_graph(verteces):
				"""	Returns	a	DiGraph	which	is	a	full	graph	with	provided	verteces	list.

								In	a	full	graph	all	verteces	link	to	all	other	verteces	(including	themselves!).
				"""

				raise	Exception("TODO	IMPLEMENT	ME!")

False

set(['a',	'c',	'b'])

a:	['c',	'b']
b:	['c']
c:	[]



1.10)	dag
Implement	this	function	outside	the	class	definition.	It	is	not	a	method	of	DiGraph	!

def	dag(verteces):
				"""	Returns	a	DiGraph	which	is	DAG	(Directed	Acyclic	Graph)	made	out	of	provided	ver
teces	list

								Provided	list	is	intended	to	be	in	topological	order.
								NOTE:	a	DAG	is	ACYCLIC,	so	caps	(self-loops)	are	not	allowed	!!
				"""

				raise	Exception("TODO	IMPLEMENT	ME!")

1.11)	list_graph
Implement	this	function	outside	the	class	definition.	It	is	not	a	method	of	DiGraph	!

def	list_graph(n):
				"""	Return	a	graph	of	n	verteces	displaced	like	a	
								monodirectional	list:		1	->	2	->	3	->	...	->	n	

								Each	vertex	is	a	number	i,	1	<=	i	<=	n		and	has	only	one	edge	connecting	it
								to	the	following	one	in	the	sequence								
								If	n	=	0,	return	the	empty	graph.
								if	n	<	0,	raises	an	Exception.
				"""				

				raise	Exception("TODO	IMPLEMENT	ME!")

1.12)	star_graph
Implement	this	function	outside	the	class	definition.	It	is	not	a	method	of	DiGraph	!

def	star_graph(n):
				"""	Returns	graph	which	is	a	star	with	n	nodes	

								First	node	is	the	center	of	the	star	and	it	is	labeled	with	1.	This	node	is	link
ed	
								to	all	the	others.	For	example,	for	n=4	you	would	have	a	graph	like	this:

																3
																^
																|				
											2	<-	1	->	4											

								If	n	=	0,	the	empty	graph	is	returned
								If	n	<	0,	raises	an	Exception											
				"""				

				raise	Exception("TODO	IMPLEMENT	ME!")



2)	Manipulate	graphs
You	will	now	implement	some	methods	to	manipulate	graphs.

2.1)	remove_vertex
def	remove_vertex(self,	vertex):
								"""	Removes	the	provided	vertex		and	returns	it

												If	the	vertex	is	not	found,	raises	an	Exception.
								"""

								raise	Exception("TODO	IMPLEMENT	ME!")

2.2)	reverse
def	reverse(self):
								"""	Reverses	the	direction	of	all	the	edges	"""

								raise	Exception("TODO	IMPLEMENT	ME!")

2.3)	has_self_loops
def	has_self_loops(self):
								"""	Returns	True	if	the	graph	has	any	self	loop	(a.k.a.	cap),	False	otherwise	""
"

								raise	Exception("TODO	IMPLEMENT	ME	!")

2.4)	remove_self_loops
def	remove_self_loops(self):
								"""	Removes	all	of	the	self-loops	edges	(a.k.a.	caps)	

												NOTE:	Removes	just	the	edges,	not	the	verteces!
								"""

								raise	Exception("TODO	IMPLEMENT	ME!")



3)	Query	graphs
You	can	query	graphs	the	"Do	it	yourself"	way	with	Depth	First	Search	(DFS)	or	Breadth	First	Search	(BFS).

3.1)	Visit	and	VertexLog
If	you	noticed,	in	the	skeleton	there	are	two	extra	classes	Visit	and	VertexLog.	Also,	in	DiGraph	the	functions	
dfs	and	bfs	are	already	provided.	The	idea	here	is	that	both	dfs	and	bfs	will	traverse	the	graph	and	report	the
intermediate	results	of	the	visit	inside	instances	of	Visit	and	VertexLog.	At	the	end	of	the	traversal,	they	will
give	back	one	instance	of	Visit.	Maybe	when	you	do	exercises	on	paper	it	is	convenient	to	write	for	example	the
discovery	times	inside	the	nodes	of	your	graphs,	but	when	programming	writing	intermediate	results	directly	in
the	verteces	of	the	input	graph	may	cause	troubles	to	the	users	of	your	methods.	So	it	is	better	to	store	such
visit	logs	in	separate	data	structures:	basically,	Visit	contains	a	a	map	that	associates	to	each	vertex	its	
VertexLog:

class	Visit:
				"""	The	visit	of	a	DiGraph	visit	sequence.	

				"""

				def	__init__(self):
								"""	Creates	a	Visit	"""

								self._logs	=	{}

In	VertexLog	you	can	put	the	intermediate	info	like	i.e.	discovery_time,	or	parents	of	the	node	if	you	are
interested	in	building	a	tree.

class	VertexLog:
				"""	Represents	the	visit	log	a	single	DiGraph	vertex

								This	class	is	very	simple	and	doesn't	even	have	getters	methods.	

								You	can	just	access	fields	by	using	the	dot:

												print	vertex_log.discovery_time

								and	set	them	directly:

												vertex_log.finish_time	=	5

								If	you	want,	an	instances	you	can	set	your	own	fields:

												vertex_log.my_own_field	=	"whatever"
				"""

				def	__init__(self,	vertex):
								self.vertex	=	vertex
								self.discovery_time	=	-1
								self.finish_time	=	-1
								self.parent	=	None

Let's	make	a	simple	example:

In	[24]:

g	=	dig('a',	['a','b',	'c'],
								'b',	['c'],
								'd',	['e'])
print	g.dfs('a')

Notice	we	started	from	'a',	so	by	default	unreachable	nodes	like	d	and	e	were	not	displayed.	Let's	try	a	bfs:

Visit:
[			{			'discovery_time':	1,	'finish_time':	6,	'parent':	None,	'vertex':	'a'},
				{			'discovery_time':	2,	'finish_time':	5,	'parent':	'a',	'vertex':	'b'},
				{			'discovery_time':	3,	'finish_time':	4,	'parent':	'b',	'vertex':	'c'}]



In	[25]:

print	g.bfs('a')

Predictably,	results	are	different,	you	can	see	it	by	the	parent	fields.	Note	how	the	finish_time	here	is	always	-1
because	it	is	less	meaningful	to	calculate	it	for	a	'bfs'.

You	can	extract	the	logs	from	the	Visit	object	by	calling	logs():

In	[26]:

pp(g.dfs('a').logs())

By	default,	they	are	sorted	ascending	by	discovery	time.	To	see	them	in	descending	order,	use	
descendant=False:

In	[27]:

pp(g.dfs('a').logs(descendant=True))		

To	see	the	last	timestamp,	use	last_time:

In	[28]:

print	g.dfs('a').last_time()

3.2)	distances()
Try	to	implement	this	method	of	DiGraph:

def	distances(self,	source):
								"""	
								Returns	a	dictionary	where	the	keys	are	verteces,	and	each	vertex	v	is	associate
d
								to	the	*minimal*	distance	in	number	of	edges	required	to	go	from	the	source	
								vertex	to	vertex	v.	If	node	is	unreachable,	the	distance	will	be	-1

								Source	has	distance	zero	from	itself
								Verteces	immediately	connected	to	source	have	distance	one.

								if	source	is	not	a	vertex,	raises	an	Exception

								HINT:	to	implement	this,	copy	and	edit	either	dfs	or	bfs.	Question:	which	one	?
								"""

If	you	look	at	the	following	graph,	you	can	see	an	example	of	the	distances	to	associate	to	each	vertex,
supposing	that	the	source	is	a.	Note	that	a	iself	is	at	distance	zero	from	itself	and	also	that	unreachable	nodes
like	f	and	g	will	be	at	distance	-1	:

Visit:
[			{			'discovery_time':	1,	'finish_time':	-1,	'parent':	None,	'vertex':	'a'},
				{			'discovery_time':	2,	'finish_time':	-1,	'parent':	'a',	'vertex':	'b'},
				{			'discovery_time':	3,	'finish_time':	-1,	'parent':	'a',	'vertex':	'c'}]

[			{			'discovery_time':	1,	'finish_time':	6,	'parent':	None,	'vertex':	'a'},
				{			'discovery_time':	2,	'finish_time':	5,	'parent':	'a',	'vertex':	'b'},
				{			'discovery_time':	3,	'finish_time':	4,	'parent':	'b',	'vertex':	'c'}]

[			{			'discovery_time':	3,	'finish_time':	4,	'parent':	'b',	'vertex':	'c'},
				{			'discovery_time':	2,	'finish_time':	5,	'parent':	'a',	'vertex':	'b'},
				{			'discovery_time':	1,	'finish_time':	6,	'parent':	None,	'vertex':	'a'}]

6



distances('a')	called	on	this	graph	would	return	a	map	like	this:

{
		'a':0,
		'b':1,
		'c':1,
		'd':2,
		'e':3,
		'f':-1,
		'g':-1,

}

3.2)	Play	with	dfs	and	bfs
Create	small	graphs	(like	linked	lists	a->b->c,	triangles,	mini-full	graphs,	trees	-	you	can	also	use	the	functions
you	defined	to	create	graphs	like	full_graph,	dag,	list_graph,	star_graph)	and	try	to	predict	the	visit
sequence	(verteces	order,	with	discovery	and	finish	times)	you	would	have	running	a	dfs	or	bfs.	Then	write	tests
that	assert	you	actually	get	those	sequences	when	running	provided	dfs	and	bfs

3.3)	Blow	up	you	computer
Try	to	call	the	already	implemented	function	gen_graphs	with	small	numbers	for	n,	like	1,	2	,	3	,	4	....	Just	with	2
we	get	back	a	lot	of	graphs:

def	gen_graphs(n):				
				"""	Returns	a	list	with	all	the	possible	2^(n^2)	graphs	of	size	n	

								Verteces	will	be	identified	with	numbers	from	1	to	n	
				"""

Out[29]:



In	[30]:

print	gen_graphs(2)

4)	Do	cool	stuff	with	theory
find	connected	components
determine	if	a	graph	is	acyclic
find	node	distances

[
1:	[]
2:	[]
,	
1:	[]
2:	[2]
,	
1:	[]
2:	[1]
,	
1:	[]
2:	[1,	2]
,	
1:	[2]
2:	[]
,	
1:	[2]
2:	[2]
,	
1:	[2]
2:	[1]
,	
1:	[2]
2:	[1,	2]
,	
1:	[1]
2:	[]
,	
1:	[1]
2:	[2]
,	
1:	[1]
2:	[1]
,	
1:	[1]
2:	[1,	2]
,	
1:	[1,	2]
2:	[]
,	
1:	[1,	2]
2:	[2]
,	
1:	[1,	2]
2:	[1]
,	
1:	[1,	2]
2:	[1,	2]
]

QUESTION:	What	happens	if	you	call	gen_graphs(10)	?	How	many	graphs	do	you
get	back	?



In	[32]:

from	graphs_solution	import	*
algolab.run(VisitTest)

Solution
Solutions	are	in	a	separate	file	(graphs_solution.py).

...
----------------------------------------------------------------------
Ran	3	tests	in	0.002s

OK


