
Chapter	2:	Lists
From	Theory	to	Python
List	performance
Table	from	the	book	Chapter	2.6:	Lists
(http://interactivepython.org/runestone/static/pythonds/AlgorithmAnalysis/Lists.html)

Fast	or	not?
x	=	["a",	"b",	"c"]

x[2]								x[2]	=	"d"							x.append("d")					x.insert(0,	"d")								x[3:5]								x.s
ort()

What	about	len(x)	?	If	you	don't	know	the	answer,	try	googling	it!

Sublist	iteration	performance

get	slice	time	complexity	is	O(k),	but	what	about	memory?	It's	the	same!

So	if	you	want	to	iterate	a	part	of	a	list,	beware	of	slicing!	For	example,	slicing	a	list	like	this	can	occupy	much
more	memory	than	necessary:

In	[2]:

x	=	range(1000)

print	[2*y	for	y	in	x[100:200]]

Out[1]:

[200,	202,	204,	206,	208,	210,	212,	214,	216,	218,	220,	222,	224,	226,	228,	230,	2
32,	234,	236,	238,	240,	242,	244,	246,	248,	250,	252,	254,	256,	258,	260,	262,	264
,	266,	268,	270,	272,	274,	276,	278,	280,	282,	284,	286,	288,	290,	292,	294,	296,	
298,	300,	302,	304,	306,	308,	310,	312,	314,	316,	318,	320,	322,	324,	326,	328,	33
0,	332,	334,	336,	338,	340,	342,	344,	346,	348,	350,	352,	354,	356,	358,	360,	362,
	364,	366,	368,	370,	372,	374,	376,	378,	380,	382,	384,	386,	388,	390,	392,	394,	3
96,	398]

Algolab
(index.html#Chapters)

Chapter	2:	Lists



The	reason	is	that,	depending	on	the	Python	interpreter	you	have,	slicing	like	x[100:200]at	loop	start	can	create
a	new	list.	If	we	want	to	explicitly	tell	Python	we	just	want	to	iterate	through	the	list,	we	can	use	the	so	called
itertools	(https://docs.python.org/2/library/itertools.html).	In	particular,	the	islice
(https://docs.python.org/2/library/itertools.html#itertools.islice)	method	is	handy,	with	it	we	can	rewrite	the	list
comprehension	above	like	this:

In	[3]:

import	itertools

print	[2*y	for	y	in	itertools.islice(x,	100,	200)]

Exercises
Implement	swap
Try	to	code	and	test	the	swap	function	from	selection	sort	(slide	29	theory)
(http://disi.unitn.it/~montreso/sp/slides/03-analisi.pdf):

Use	the	following	skeleton	to	code	it
Check	carefully	all	the	test	cases,	in	particular	test_swap_property	and	test_double_swap.	They	show
two	important	properties	of	the	swap	function.	Make	sure	you	understand	why	these	tests	should
succeed.

[200,	202,	204,	206,	208,	210,	212,	214,	216,	218,	220,	222,	224,	226,	228,	230,	2
32,	234,	236,	238,	240,	242,	244,	246,	248,	250,	252,	254,	256,	258,	260,	262,	264
,	266,	268,	270,	272,	274,	276,	278,	280,	282,	284,	286,	288,	290,	292,	294,	296,	
298,	300,	302,	304,	306,	308,	310,	312,	314,	316,	318,	320,	322,	324,	326,	328,	33
0,	332,	334,	336,	338,	340,	342,	344,	346,	348,	350,	352,	354,	356,	358,	360,	362,
	364,	366,	368,	370,	372,	374,	376,	378,	380,	382,	384,	386,	388,	390,	392,	394,	3
96,	398]



In	[4]:

import	unittest

def	swap(A,	x,	y):
				"""
				In	the	array	A,	swaps	the	elements	at	position	x	and	y.
				"""
				raise	Exception("TODO	implement	me!")
				
class	SwapTest(unittest.TestCase):
			
				def	test_one_element(self):
								v	=	['a'];
								swap(v,0,0)
								self.assertEqual(v,	['a'])

				def	test_two_elements(self):
								v	=	['a','b'];
								swap(v,0,1)
								self.assertEqual(v,	['b','a'])
								
				def	test_return_none(self):
								v	=	['a','b',	'c',	'd'];
								self.assertEquals(None,	swap(v,1,3))
								
								
				def	test_long_list(self):
								v	=	['a','b',	'c',	'd'];
								swap(v,1,3)
								self.assertEqual(v,	['a',	'd','c',	'b'])
								
								
				def	test_swap_property(self):
								v	=	['a','b','c','d'];
								w	=	['a','b','c','d'];
								swap(v,1,3)
								swap(w,3,1)
								self.assertEqual(v,	w)

				def	test_double_swap(self):
								v	=	['a','b','c','d'];								
								swap(v,1,3)
								swap(v,1,3)
								self.assertEqual(v,	['a','b','c','d'])			



Implement	partial_min_pos
Try	to	code	and	test	the	partial	min	pos	function	from	selection	sort	(slide	29	theory)
(http://disi.unitn.it/~montreso/sp/slides/03-analisi.pdf):

Use	the	following	skeleton	to	code	it
add	some	test	to	the	provided	testcase	class

Notice	that

we	renamed	min	to	partial_min_pos	to	avoid	name	collision	with	Python	standard	library	min	function
it	is	not	necessary	to	pass	list	length	n,	as	it	is	already	stored	in	Python	implementation	of	lists,	and	we
can	retrieve	it	in	O(1)	time	with	len(A)

In	[5]:

import	unittest

def	partial_min_pos(A,	i):
				"""
				Return	the	index	of	the	element	in	list	A	which	is	lesser	or	equal	than	all	other	values	i
n	A	
				that	start	from	index	i	included
				"""
				raise	Exception("TODO	implement	me!")
				
class	PartialMinPosTest(unittest.TestCase):
			
				def	test_one_element(self):
								self.assertEqual(partial_min_pos([1],0),0)					

				def	test_two_elements(self):
								self.assertEqual(partial_min_pos([1,2],0),0)
								self.assertEqual(partial_min_pos([2,1],0),1)
								self.assertEqual(partial_min_pos([2,1],1),1)
								
				def	test_long_list(self):
								self.assertEqual(partial_min_pos([8,9,6,5,7],2),3)			
				



Implement	selection_sort
Try	to	code	and	test	the	selectionSort	from	selection	sort	(slide	29	theory)
(http://disi.unitn.it/~montreso/sp/slides/03-analisi.pdf):

Use	the	following	skeleton	to	code	it	and	add	some	test	to	the	provided	testcase	class.

Notice	that

we	renamed	selectionSort	to	selection_sort	because	it	is	a	more	pythonic	name
(https://www.python.org/dev/peps/pep-0008/#function-names)
it	is	not	necessary	to	pass	list	length	n,	as	it	is	already	stored	in	Python	implementation	of	lists,	and	we
can	retrieve	it	in	O(1)	time	with	len(A)
On	the	book	website,	there	is	an	implementation	of	the	selection	sort
(http://interactivepython.org/runestone/static/pythonds/SortSearch/TheSelectionSort.html)	with	a	nice
animated	histogram	showing	a	sorting	process.	Differently	from	the	slides,	instead	of	selecting	the
minimal	element	the	algorithm	on	the	book	selects	the	maximal	element	and	puts	it	to	the	right	of	the
array.

In	[6]:

import	unittest

def	selection_sort(A):
				"""
				Sorts	the	list	A	in-place	in	O(n^2)	time.	
				"""
				raise	Exception("TODO	implement	me!")
				
class	SelectionSortTest(unittest.TestCase):
			
				def	test_zero_elements(self):
								v	=	[]
								selection_sort(v)
								self.assertEqual(v,[])					
								
				def	test_return_none(self):				
								self.assertEquals(None,	selection_sort([2]))								
								
				def	test_one_element(self):
								v	=	["a"]
								selection_sort(v)
								self.assertEqual(v,["a"])					
								

				def	test_two_elements(self):
								v	=	[2,1]
								selection_sort(v)
								self.assertEqual(v,[1,2])		
								
				def	test_three_elements(self):
								v	=	[2,1,3]
								selection_sort(v)
								self.assertEqual(v,[1,2,3])
				
				def	test_piccinno_list(self):								
								v	=	[23,	34,	55,	32,	7777,	98,	3,	2,	1]								
								selection_sort(v)
								vcopy	=	v[:]
								vcopy.sort()
								self.assertEqual(v,	vcopy)					



Implement	gap_rec
Try	to	code	and	test	the	gap	function	from	recursion	theory	slides	(slide	21)
(http://disi.unitn.it/~montreso/sp/slides/02-recursion.pdf):

Use	the	following	skeleton	to	code	it	and	add	some	test	to	the	provided	testcase	class.To	understand	what's
going	on,	try	copy	pasting	your	solution	in	Python	tutor	(http://pythontutor.com/visualize.html#mode=edit)	and
hit	Visualize	execution	and	then	Forward	to	step	through	the	process

Notice	that

We	created	a	function	gap_rec	to	differentiate	it	from	the	iterative	one
Users	of	gap_rec	function	might	want	to	call	it	by	passing	just	a	list,	in	order	to	find	any	gap	in	the	whole
list.	So	for	convenience	the	new	function	gap_rec(L)	only	accepts	a	list,	without	indexes	i	and	j.	This
function	just	calls	the	other	function	gap_rec_helper	that	will	actually	contain	the	recursive	calls.	So
your	task	is	to	translate	the	pseudocode	of	gap	into	the	Python	code	of	gap_rec_helper,	which	takes	as
input	the	array	and	the	indexes	as	gap	does.	Adding	a	helper	function	is	a	frequent	pattern	you	can	find
when	programming	recursive	functions.

When	preconditions	are	not	met,	execution	could	stop	because	of	an	error	like	index	out	of	bounds,	or,	even
worse,	we	might	get	back	some	wrong	index	as	a	gap!	To	prevent	misuse	of	the	function,	a	good	idea	can	be
putting	a	check	at	the	beginning	of	the	gap_rec	function.	Such	check	should	immediately	stop	the	execution	and
raise	an	error	if	the	parameters	don't	satisfy	the	preconditions.	One	way	to	do	this	could	be	to	write	some
assertion	(testing#Assertions)	like	this:

assert	len(L)	>=	2
				assert	L[0]	<=	L[len(L)-1]

These	commands	will	make	python	interrupt	execution	and	throw	an	error	as	soon	it	detects	list	L	is	too
small	or	with	wrong	values
This	kind	of	behaviour	is	also	called	fail	fast,	which	is	better	than	returning	wrong	values!
You	can	put	any	condition	you	want	after	assert,	but	ideally	they	should	be	fast	to	execute.

In	[8]:

	

WARNING:	The	specification	of	gap_rec	assumes	the	input	is	always	a	list	of	at
least	two	elements,	and	that	the	first	element	is	less	or	equal	than	the	last	one.
If	these	conditions	are	not	met,	function	behaviour	could	be	completely
erroneus!

GOOD	PRACTICE:	Notice	I	wrote	as	a	comment	what	the	helper	function	is
expected	to	receive.	Writing	down	specs	often	helps	understanding	what	the
function	is	supposed	to	do,	and	helps	users	of	your	code	as	well!

COMMANDMENT:	You	shall	also	write	on	paper!



To	get	an	idea	of	how	gap_rec	is	working,	draw	histograms	on	paper	like	the	following,	with	different	heights	at
index	m:

0 m n-1
Notice	how	at	each	recursive	call,	we	end	up	with	a	histogram	that	is	similar	to	the	inital	one,	that	is,	it	respects
the	same	preconditions	(a	list	of	size	>=	2	where	first	element	is	smaller	or	equal	than	the	last	one)

Look	at	the	iterative	gap	here:

def	gap_iter(L):
				for	i	in	range(1,len(L)):
								if	L[i-1]	<	L[i]:
												return	i
				return	-1

What	is	the	complexity	of	gap_rec?	Is	it	faster	or	slower	than	gap_iter	?
Assuming	L	contains	n	>=	2	integers	such	that	L[0]	<	L[n-1],	will	the	recursive	gap	always	give	the
same	result	as	the	iterative	one?	If	we	just	change	function	names,	can	we	run	the	same	test	case
against	both	implementations?	(Careful!)



In	[10]:

import	unittest

def	gap_rec(L):
				"""	Searches	a	gap	in	list	L
				
				Given	a	list	L	containing	n	>=	2	integers	such	that	L[0]	<	L[n-1],	returns	a	gap	in	the	li
st.
				A	gap	is	an	index	i,	0	<	i	<	n	such	that	L[i-1]	<	L[i]
				"""				
				return	gap_helper(L,	0,	len(L)-1)

def	gap_helper(L,	i,	j):
				"""	Searches	a	gap	in	sublist	L[i:j]
				
				Given	a	list	L	containing	n	>=	2	integers	such	that	L[i]	<	L[j],	returns	a	gap	in	the	subl
ist	L[i:j]
				A	gap	is	an	index	z,	i	<	z	<	j+1	such	that	L[z-1]	<	L[z]
				"""				
				raise	Exception("TODO	implement	me!")
				
class	GapRecTest(unittest.TestCase):
			
				def	test_two_elements(self):								
								self.assertEqual(gap_rec([1,2]),1)	

				def	test_three_elements_middle(self):																								
								self.assertEquals(gap_rec([1,3,3]),	1)								
								
				def	test_three_elements_right(self):								
								self.assertEquals(gap_rec([1,1,3]),	2)								



Implement	binary_search_rec
Try	to	code	and	test	the	binarySearch	recursive	function	from	recursion	theory	slides	(slide	21)
(http://disi.unitn.it/~montreso/sp/slides/02-recursion.pdf):

Use	the	following	skeleton	to	code	it
add	some	test	to	the	provided	testcase	class
Does	the	pseudocode	algorithm	work	with	the	empty	list?
What	happens	if	we	allow	non-distinct	numbers?	Does	it	work	anyway?
What	is	the	time	complexity	of	the	recursive	version?
What	is	the	memory	complexity	of	the	recursive	version?

Notice	that

we	renamed	binarySearch	to	binary_search_rec	to	have	more	pythonic	name	and	differentiate	it	from
the	iterative	one
the	renamed	function	binary_search_rec(L)	only	accepts	a	list,	without	indexes	i	and	j,	we	will	need	a
way	to	specify	them	when	we	translate	the	pseudocode.	You	can	follow	the	same	pattern	used	for	
gap_rec_helper

SUGGESTION	:	write	as	a	comment	what	the	helper	function	is	expected	to	receive.	Can	it	receive
an	empty	list?	Can	it	receive	indices	out	of	bounds?	You	decide	the	assumptions,	but	once	they
are	decided	you	should	make	sure	that	unacceptable	values	don't	get	into	it!

To	understand	what's	going	on,	try	copy	pasting	your	solution	in	Python	tutor
(http://pythontutor.com/visualize.html#mode=edit)	and	hit	Visualize	execution	and	then	Forward	to
step	through	the	process
Remember	that	even	experienced	programmers	tend	to	fail	implementing	the	binary	search	at	first	time,
it's	easy	to	get	wrong	indexes!	So	good	tests	here	can	really	spot	issues.



In	[11]:

import	unittest

def	binary_search_rec(L,v	):
				"""	Searches	value	v	in	sorted	list	L
				
				Given	a	list	L	containing	n	distinct	sorted	integers,	returns	the	index	position
				of	element	with	value	v,	or	-1	if	not	found
				"""

				raise	Exception("TODO	implement	me!")				
				
class	BinarySearchRecTest(unittest.TestCase):							
				
				def	test_empty(self):
								self.assertEqual(binary_search_rec([],	7),	-1)
			
				def	test_one_element_found(self):								
								self.assertEqual(binary_search_rec([7],7),0)	

				def	test_one_element_not_found(self):
								self.assertEqual(binary_search_rec([6],7),-1)									
				
				def	test_one_negative_element_not_found(self):								
								self.assertEqual(binary_search_rec([-7],7),-1)									

				def	test_two_elements_found_right(self):																								
								self.assertEquals(binary_search_rec([6,7],7),	1)								
								
				def	test_two_elements_not_found(self):																								
								self.assertEquals(binary_search_rec([6,7],3),	-1)
								
				def	test_two_elements_found_left(self):																								
								self.assertEquals(binary_search_rec([6,7],6),	0)				
																
				def	test_long_list(self):																								
								self.assertEquals(binary_search_rec([2,4,5,7,9],7),	3)											
								

Implement	binary_search_iter
Try	to	code	and	test	the	iterativeBinarySearch	function	from	Introduction	slides	(slide	18)
(http://disi.unitn.it/~montreso/sp/slides/01-introduzione.pdf):

This	time,	there's	no	code	skeleton	and	you're	on	your	own!
Try	to	reuse	test	cases	from	the	recursive	version
What	is	the	time	complexity	of	the	iterative	version?	Is	it	different	from	the	recursive	version?
What	is	the	memory	complexity	of	the	iterative	version?	Is	it	different	from	the	recursive	version?



Solutions

swap	solution

In	[12]:

import	unittest

def	swap(A,	x,	y):
				"""
				In	the	array	A,	swaps	the	elements	at	position	x	and	y.
				"""
				temp	=	A[x]
				A[x]	=	A[y]
				A[y]	=	temp
				
class	SwapTest(unittest.TestCase):
			
				def	test_one_element(self):
								v	=	['a'];
								swap(v,0,0)
								self.assertEqual(v,	['a'])

				def	test_two_elements(self):
								v	=	['a','b'];
								swap(v,0,1)
								self.assertEqual(v,	['b','a'])
								
				def	test_return_none(self):
								v	=	['a','b',	'c',	'd'];
								self.assertEquals(None,	swap(v,1,3))								
								
				def	test_long_list(self):
								v	=	['a','b',	'c',	'd'];
								swap(v,1,3)
								self.assertEqual(v,	['a',	'd','c',	'b'])
								
								
				def	test_swap_property(self):
								v	=	['a','b','c','d'];
								w	=	['a','b','c','d'];
								swap(v,1,3)
								swap(w,3,1)
								self.assertEqual(v,	w)

				def	test_double_swap(self):
								v	=	['a','b','c','d'];								
								swap(v,1,3)
								swap(v,1,3)
								self.assertEqual(v,	['a','b','c','d'])

partial_min_pos	solution



In	[14]:

import	unittest

def	partial_min_pos(A,	i):
				"""
				Return	the	index	of	the	element	in	list	A	which	is	lesser	or	equal	than	all	other	values	i
n	A	
				that	start	from	index	i	included
				"""
				pm	=	i
				
				for	j	in	range(i+1,	len(A)):
								if	(A[j]	<	A[pm]):
												pm	=	j	
				return	pm
				
class	PartialMinPosTest(unittest.TestCase):
			
				def	test_one_element(self):
								self.assertEqual(partial_min_pos([1],0),0)					

				def	test_two_elements(self):
								self.assertEqual(partial_min_pos([1,2],0),0)
								self.assertEqual(partial_min_pos([2,1],0),1)
								self.assertEqual(partial_min_pos([2,1],1),1)
								
				def	test_long_list(self):
								self.assertEqual(partial_min_pos([8,9,6,5,7],2),3)

								

selection_sort	solution



In	[16]:

import	unittest

def	selection_sort(A):
				"""
				Sorts	the	list	A	in-place	in	O(n^2)	time.	
				"""
				for	i	in	range(0,	len(A)-1):
								m	=	partial_min_pos(A,	i)
								swap(A,	i,	m)
				
class	SelectionSortTest(unittest.TestCase):
			
				def	test_zero_elements(self):
								v	=	[]
								selection_sort(v)
								self.assertEqual(v,[])					
								
				def	test_return_none(self):				
								self.assertEquals(None,	selection_sort([2]))								
								
				def	test_one_element(self):
								v	=	["a"]
								selection_sort(v)
								self.assertEqual(v,["a"])					
								

				def	test_two_elements(self):
								v	=	[2,1]
								selection_sort(v)
								self.assertEqual(v,[1,2])		
								
				def	test_three_elements(self):
								v	=	[2,1,3]
								selection_sort(v)
								self.assertEqual(v,[1,2,3])
				
				def	test_piccinno_list(self):								
								v	=	[23,	34,	55,	32,	7777,	98,	3,	2,	1]								
								selection_sort(v)
								vcopy	=	v[:]
								vcopy.sort()
								self.assertEqual(v,	vcopy)				

gap_rec	solution



In	[18]:

import	unittest

def	gap_rec(L):
				"""
				Given	a	list	L	containing	n	>=	2	integers	such	that	L[0]	<	L[n-1],	returns	a	gap	in	the	li
st.
				A	gap	is	an	index	i,	0	<	i	<	n	such	that	L[i-1]	<	L[i]
				"""				
				return	gap_helper(L,	0,	len(L)-1)

def	gap_helper(L,	i,	j):
				"""
				Given	a	list	L	containing	n	>=	2	integers	such	that	L[i]	<	L[j],	returns	a	gap	in	the	subl
ist	L[i:j]
				A	gap	is	an	index	z,	i	<	z	<	j+1	such	that	L[z-1]	<	L[z]
				"""
				if	j	==	i	+	1:
								return	j
				m	=	(i+j)	//	2			#	remember	in	every	python	version	//	operator	behaves	the	same	and	floor
s	the	result
				
				if	(L[m]	<=	L[i]):
								return	gap_helper(L,	m,	j)
				else:
								return	gap_helper(L,	i,	m)
				
class	GapRecTest(unittest.TestCase):
			
				def	test_two_elements(self):								
								self.assertEqual(gap_rec([1,2]),1)	

				def	test_three_elements_middle(self):																								
								self.assertEquals(gap_rec([1,3,3]),	1)								
								
				def	test_three_elements_right(self):								
								self.assertEquals(gap_rec([1,1,3]),	2)								

binary_search_rec	solution

In	[20]:

import	unittest

def	binary_search_rec(L,v	):
				"""	Searches	value	v	in	sorted	list	L
				
				Given	a	list	L	containing	n	distinct	sorted	integers,	returns	the	index	position
				of	element	with	value	v,	or	-1	if	not	found
				"""

				return	binary_search_helper(L,v,	0,	len(L)-1)

def	binary_search_helper(L,	v,	i,	j):
				"""	Helper	for	the	recursive	binary	search
				
				Given	a	list	L	containing	n	distinct	sorted	integers,	returns	the	index	position
				of	element	with	value	v	if	it	is	present	in	sublist	L[i:j],	or	-1	if	not	found
				"""
				if	i	>	j:
								return	-1
				
				m	=	(i+j)	//	2			#	remember	in	every	python	version	//	operator	behaves	the	same	and	floor
s	the	result
								
				#	print	"L	=	",	L
				#	print	"v	=	",	v
				#	print	"m	=	",	m
				#	print	"i	=	",	i
				#	print	"j	=	",	j



				#	print	"j	=	",	j

				
				if	L[m]	==	v:
								return	m
				elif	L[m]	<	v:
								return	binary_search_helper(L,	v,	m	+	1,	j)
				else:
								return	binary_search_helper(L,	v,	i,	m	-	1)
				
class	BinarySearchRecTest(unittest.TestCase):							
				
				def	test_empty(self):
								self.assertEqual(binary_search_rec([],	7),	-1)
			
				def	test_one_element_found(self):								
								self.assertEqual(binary_search_rec([7],7),0)	

				def	test_one_element_not_found(self):
								self.assertEqual(binary_search_rec([6],7),-1)									
				
				def	test_one_negative_element_not_found(self):								
								self.assertEqual(binary_search_rec([-7],7),-1)									

				def	test_two_elements_found_right(self):																								
								self.assertEquals(binary_search_rec([6,7],7),	1)								
								
				def	test_two_elements_not_found(self):																								
								self.assertEquals(binary_search_rec([6,7],3),	-1)
								
				def	test_two_elements_found_left(self):																								
								self.assertEquals(binary_search_rec([6,7],6),	0)								
								
				def	test_long_list(self):																								
								self.assertEquals(binary_search_rec([2,4,5,7,9],7),	3)							
								
				def	test_not_distinct_found(self):																								
								self.assertEquals(binary_search_rec([7,7],7),	0)								

				def	test_not_distinct_not_found(self):																								
								self.assertEquals(binary_search_rec([7,7],5),	-1)
								
								
								


