
Chapter	0:	Testing
Introduction

If	it	seems	to	work,	then	it	actually	works?
The	devil	is	in	the	details,	especially	for	complex	algorithms.
We	will	do	a	crash	course	on	testing	in	Python

In	a	typical	scenario,	somebody	can	ask	you	to	write	a	function	to	perform	some	task,	giving	only	an	informal
description:

In	[2]:

def	even_numbers(n):
				"""
				Return	a	list	of	the	first	n	even	numbers	
				
				Zero	is	considered	to	be	the	first	even	number.

				>>>	even_numbers(5)
				[0,2,4,6,8]
				"""				
				raise	Exception("TODO	IMPLEMENT	ME!")

In	this	case,	if	you	run	the	function	as	it	is,	you	are	reminded	to	implement	it!	So	let's	put	some	code.	As	it	often
happens,	first	version	may	be	buggy...

In	[3]:

def	even_numbers(n):
				"""
				Return	a	list	of	the	first	n	even	numbers	
				
				Zero	is	considered	to	be	the	first	even	number.

				>>>	even_numbers(5)
				[0,2,4,6,8]
				"""				
				r	=	[2	*	x	for	x	in	range(n)]
				r[n	//	2]	=	3			#	<--	evil	bug,	puts	number	'3'	in	the	middle
				return	r

Typically	the	first	test	we	do	is	printing	the	output	and	do	some	'visual	inspection'	of	the	result,	in	this	case	we
find	many	numbers	are	correct	but	we	might	miss	errors	such	as	the	wrong	3	in	the	middle:

In	[4]:

print	even_numbers(5)

Furthermore,	if	we	enter	commands	a	the	prompt,	each	time	we	fix	something	in	the	code	we	need	to	enter	them
again.

Assertions
To	go	beyond	the	"visual	inspection"	testing,	it's	better	to	write	some	extra	code	to	allow	python	to	check	for	us	if
the	function	actually	returns	what	we	expect,	and	throws	an	error	otherwise.	We	can	do	so	with	assert
command:

Out[1]:

[0,	2,	3,	6,	8]

Algolab
(index.html#Chapters)

Chapter	0:	Testing



assert	even_numbers(5)	==	[0,2,4,6,8]

---------------------------------------------------------------------------
AssertionError																												Traceback	(most	recent	call	last)
<ipython-input-5-2363c9dca74d>	in	<module>()
---->	1	assert	even_numbers(5)	==	[0,2,4,6,8]

AssertionError:

This	way	after	we	modify	code	to	fix	bugs	we	can	just	launch	the	assert	commands	and	have	a	quick	feedback
about	possible	errors.

Unittest
assert	can	help	for	quick	testing,	but	doesn't	tell	us	exactly	which	is	the	wrong	number	in	the	list	returned	by	
even_number(5).	Luckily,	Python	offers	us	a	better	option,	which	is	a	complete	testing	framework	called	unittest
(https://docs.python.org/2/library/unittest.html).

Let's	give	it	a	try.	Suppose	you	have	a	file	called	my-file.py	like	this:

In	[6]:

import	unittest

def	even_numbers(n):
				"""
				Return	a	list	of	the	first	n	even	numbers	
				
				Zero	is	considered	to	be	the	first	even	number.

				>>>	even_numbers(5)
				[0,2,4,6,8]
				"""				
				r	=	[2	*	x	for	x	in	range(n)]
				r[n	//	2]	=	3			#	<--	evil	bug,	puts	number	'3'	in	the	middle
				return	r

class	MyTest(unittest.TestCase):

				def	test_long_list(self):
								self.assertEqual(even_numbers(5),[0,2,4,6,8])	



We	won't	explain	what	class	mean,	the	important	thing	to	notice	is	the	method	definition:

def	test_long_list(self):
								self.assertEqual(even_numbers(5),[0,2,4,6,8])

In	particular:

method	is	declared	like	a	function,	and	begins	with	'test_'	word
method	takes	self	as	parameter
self.assertEqual(even_numbers(5),[0,2,4,6,8])	executes	the	assertion.	Other	assertions	could	be	
self.assertTrue(some_condition)	or	self.assertFalse(some_condition)

Running	tests

To	run	the	tests,	enter	the	following	command	in	the	terminal:	

				

				python	-m	unittest	my-file

												

!!!!!	WARNING:	In	the	call	above,	DON'T	append	the	extension	`.py`	to	`my-file`	!!!!!!	
!!!!!	WARNING:	Still,	on	the	hard-disk	the	file	MUST	be	named	with	a	`.py`	at	the	end,	like	`my-
file.py`!!!!!!

You	should	see	an	output	like	the	following:

F
======================================================================
FAIL:	test_long_list	(__main__.MyTest)
----------------------------------------------------------------------
Traceback	(most	recent	call	last):
		File	"<ipython-input-6-cf0baeef2e72>",	line	19,	in	test_long_list
				self.assertEqual(even_numbers(5),[0,2,4,6,8])
AssertionError:	Lists	differ:	[0,	2,	3,	6,	8]	!=	[0,	2,	4,	6,	8]

First	differing	element	2:
3
4

-	[0,	2,	3,	6,	8]
?								^

+	[0,	2,	4,	6,	8]
?								^

----------------------------------------------------------------------
Ran	1	test	in	0.001s

FAILED	(failures=1)



Now	you	can	see	a	nice	display	of	where	the	error	is,	exactly	in	the	middle	of	the	list.

When	tests	don't	run
When	-m	unittest	does	not	work	and	you	keep	seeing	absurd	errors	like	Python	not	finding	a	module	and	you
are	getting	desperate	(especially	because	Python	has	unittest	included	by	default,	there	is	no	need	to	install	it!
),	try	to	put	the	following	code	at	the	very	end	of	the	file	you	are	editing:

unittest.main()

Then	run	your	file	with	just

python	my-file.py

In	this	case	it	should	REALLY	work.	If	it	still	doesn't,	call	the	Ghostbusters.	Or,	better,	the	IndentationBusters,
you're	likely	having	tabs	mixed	with	spaces	mixed	with	bad	bad	luck.

Adding	tests
How	can	we	add	(good)	tests?	Since	best	ones	are	usually	short,	it	would	be	better	starting	small	boundary
cases.	For	example	like	n=1	,	which	according	to	function	documentation	should	produce	a	list	containing	zero:

In	[8]:

class	MyTest(unittest.TestCase):

				def	test_one_element(self):
								self.assertEqual(even_numbers(1),[0])
								
				def	test_long_list(self):
								self.assertEqual(even_numbers(5),[0,2,4,6,8])	
								
								

Let's	call	again	the	command:

python	-m	unittest	my-file



From	the	tests	we	can	now	see	there	is	clearly	something	wrong	with	the	number	3	that	keeps	popping	up,
making	both	tests	fail.	You	can	see	immediately	which	tests	have	failed	by	looking	at	the	first	two	FF	at	the	top	of
the	output.	Let's	fix	the	code	by	removing	the	buggy	line:

In	[10]:

def	even_numbers(n):
				"""
				Return	a	list	of	the	first	n	even	numbers	
				
				Zero	is	considered	to	be	the	first	even	number.

				>>>	even_numbers(5)
				[0,2,4,6,8]
				"""				
				r	=	[2	*	x	for	x	in	range(n)]
				#	NOW	WE	COMMENTED	THE	BUGGY	LINE		r[n	//	2]	=	3			#	<--	evil	bug,	puts	number	'3'	in	the	
middle
				return	r

And	call	yet	again	the	command:

python	-m	unittest	my-file

FF
======================================================================
FAIL:	test_long_list	(__main__.MyTest)
----------------------------------------------------------------------
Traceback	(most	recent	call	last):
		File	"<ipython-input-8-ee61bb2dd25a>",	line	7,	in	test_long_list
				self.assertEqual(even_numbers(5),[0,2,4,6,8])
AssertionError:	Lists	differ:	[0,	2,	3,	6,	8]	!=	[0,	2,	4,	6,	8]

First	differing	element	2:
3
4

-	[0,	2,	3,	6,	8]
?								^

+	[0,	2,	4,	6,	8]
?								^

======================================================================
FAIL:	test_one_element	(__main__.MyTest)
----------------------------------------------------------------------
Traceback	(most	recent	call	last):
		File	"<ipython-input-8-ee61bb2dd25a>",	line	4,	in	test_one_element
				self.assertEqual(even_numbers(1),[0])
AssertionError:	Lists	differ:	[3]	!=	[0]

First	differing	element	0:
3
0

-	[3]
+	[0]

----------------------------------------------------------------------
Ran	2	tests	in	0.002s

FAILED	(failures=2)



Wonderful,	all	the	two	tests	have	passed	and	we	got	rid	of	the	bug.

Exercises
1.	 Think	about	other	boundary	cases,	and	try	to	add	corresponding	tests.	Hint:	Can	we	ever	have	an	empty

list?	Which	values	can	assume	n?
2.	 What	difference	there	is	between	the	following	two	test	classes?	Which	one	is	better	for	testing?

class	MyTest(unittest.TestCase):

				def	test_one_element(self):
								self.assertEqual(even_numbers(1),[0])

				def	test_long_list(self):
								self.assertEqual(even_numbers(5),[0,2,4,6,8])

and

class	MyTest(unittest.TestCase):

				def	test_stuff(self):
								self.assertEqual(even_numbers(1),[0])
								self.assertEqual(even_numbers(5),[0,2,4,6,8])

..
----------------------------------------------------------------------
Ran	2	tests	in	0.001s

OK


