
Chapter	3:	Trees
Tree	theory
See	Alberto	Montresor	theory	here:	http://disi.unitn.it/~montreso/sp/slides/05-alberi.pdf
(http://disi.unitn.it/~montreso/sp/slides/05-alberi.pdf)

See	Trees	on	the	book	(https://interactivepython.org/runestone/static/pythonds/Trees/toctree.html)

In	particular,	see	:

Vocabulary	and	definitions
(https://interactivepython.org/runestone/static/pythonds/Trees/VocabularyandDefinitions.html)

GenericTree	theory
See	Alberto	Montresor	theory	here	(NOTE:	currently	they	are	being	reworked):
http://disi.unitn.it/~montreso/sp/slides/05-alberi.pdf	(http://disi.unitn.it/~montreso/sp/slides/05-alberi.pdf)	(slide
27	and	following	ones)

In	this	worksheet	we	are	going	to	provide	an	implementation	of	a	GenericTree	class:

Differently	from	the	UnorderedList,	which	had	actually	two	classes	Node	and	UnorderedList	that	was
pointing	to	the	first	node,	in	this	case	we	just	have	one	GenericTree	class.	So	to	grow	a	tree	like	the
above	one	in	the	picture,	for	each	of	the	boxes	that	you	see	we	will	need	to	create	one	instance	of	
GenericTree	and	link	it	to	the	other	instances.
Ordinary	simple	trees	just	hold	pointers	to	the	children.	In	this	case,	we	have	an	enriched	tree	which
holds	ponters	also	to	up	the	parent	and	on	the	right	to	the	siblings.	Whenever	we	are	going	to
manipulate	the	tree,	we	need	to	take	good	care	of	updating	these	pointers.

Out[1]:

ROOT	NODE:	In	this	context,	we	call	a	node	root	if	has	no	incoming	edges	and	it
has	no	parent	nor	sibling

DETACHING	A	NODE:	In	this	context,	when	we	detach	a	node	from	a	tree,	the
node	becomes	the	root	of	a	new	tree,	which	means	it	will	have	no	link	anymore
with	the	tree	it	was	in.

Algolab
(index.html#Chapters)

Chapter	3:	Trees

0)	Code	skeleton
You	will	implement	the	GenericTree	class.	First	off,	download	the	Python	skeleton	(trees.py)	to	modify.	Solutions
are	in	a	separate	file	(trees_solution.py).

1)	Building	trees
Let's	learn	how	to	build	GenericTree

1.1)	Pointers
A	GenericTree	class	holds	3	pointers	that	link	it	to	the	other	nodes:	_child,	_sibling	and	_parent.	It	also	holds
a	value	data	which	is	provided	by	the	user	to	store	arbitrary	data	(could	be	ints,	strings,	lists,	even	other	trees,
we	don't	care):

class	GenericTree:

				def	__init__(self,	data):
								self._data	=	data
								self._child	=	None
								self._sibling	=	None
								self._parent	=	None

To	create	a	tree	of	one	node,	just	call	the	constructor	passing	whatever	you	want	like	this:

tblah	=	GenericTree("blah")

tn	=	GenericTree(5)

Note	that	with	the	provided	constructor	you	can't	pass	children.

1.2)	Building	with	insert_child
To	grow	a	GenericTree,	as	basic	building	block	you	will	have	to	implement	insert_child:

def	insert_child(self,	new_child):								
								"""	Inserts	new_child	at	the	beginning	of	the	children	sequence.	"""

You	can	call	it	like	this:

IMPORTANT:	All	methods	and	functions	in	section	1)	are	already	provided	and
you	don't	need	to	implement	them	!

>>>	ta	=	GenericTree('a')
>>>	print	ta
a												#	'a'	is	the	root

>>>	tb	=	GenericTree('b')
>>>	ta.insert_child(tb)
>>>	print	ta
a												#	'a'	is	the	root	
\-b										#	'b'	is	the	child	.	The	'\'	means	just	that	it	is
													#		also	the	last	child	of	the	siblings	sequence

>>>	tc	=	GenericTree('c')
>>>	ta.insert_child(tc)
>>>	print	ta
a											#	'a'	is	the	root	
|-c									#	'c'	is	inserted	as	the	first	child	(would	be	shown	on	the	left	in	the	grap
h	image)
\-b									#	'b'	is	now	the	next	sibling	of	c		The	'\'	means	just	that	it	
												#		is	also	the	last	child	of	the	siblings	sequence

>>>	td	=	GenericTree('d')
>>>	tc.insert_child(td)
>>>	print	ta
a											#	'a'	is	the	root	
|-c									#	'c'	is	the	first	child	of	'a'
|	\-d							#	'd'	is	the	first	child	of	'c'
\-b									#	'b'	is	the	next	sibling	of	c

1.3)	Building	with	gt
If	you	need	to	test	your	data	structure,	we	provide	you	with	this	handy	function	gt	that	allows	to	easily	construct
trees	from	other	trees:

def	gt(data,	children=[])
				"""	Returns	a	GenericTree	of	which	the	root	node	is	filled	with	provided	data
								and	children.	Children	must	be	instances	of	GenericTree.
				"""

NOTE:	this	function	is	not	a	class	method,	you	can	directly	invoke	it	like	this:

>>>	print	gt('a')
				a

				>>>	print	gt('a',	gt('b'),	gt('c'))								
				a
				|-b
				\-c

WARNING:	DO	NOT	USE	gt	inside	your	implementation	code	!!!!	gt	is	just	meant
for	testing.

2)	Implement	missing	methods
Start	implementing	insert_child,	make	sure	the	tests	for	it	pass,	and	then	implement	the	other	methods.	Don't
worry	if	insert_sibling	and	insert_siblings	test	always	fail,	to	fix	them	see	next	section.

3)	Implement	missing	tests
3.1)	Implement	the	missing	tests	test_insert_sibling	and	test_insert_siblings.	To	do	it,feel	free	to	use	gt,	
assertTreeEquals,	assertRoot	and	whatever	other	function	you	can	find	in	the	code.	If	possible,	try	to
implement	a	test	method	for	each	case	you	might	have

3.2)	Once	you're	done	and	your	new	tests	pass,	save	a	copy	of	your	work

3.3)	Work	in	group	and	add	to	your	test	class	the	test	implementation	of	somebody	else,	taking	care	of	renaming
test	methods	so	to	avoid	name	clashes.	Run	the	tests	and	check	if	you	agree	with	your	.

3.4)	Try	to	implement	on	you	own	tests	for	other	methods,	like	detach.	Check	they	pass	and	then	exchange	tests
with	your	collegues.

GenericTree	Solution
Solutions	are	in	a	separate	file	(trees_solution.py).

In	[6]:

from	trees	import	*

In	[7]:

from	trees_solution	import	*
algolab.run(GenericTreeTest)

In	[8]:

	

Is	the	function	to	test	expected	to	raise	an	Exception	in	some	circumstance?

...................
--
Ran	19	tests	in	0.019s

OK

