Price catalog

Download worked project

Browse files online

Public administrations always need to know the up-to-date prices of all the various items they need, so to place appropriate orders to contractors. We’ll analyze the dataset EPPAT-2018-new-compact.csv, which is the price list for all products and services the Autonomous Province of Trento (Italy) may require.

Data source: dati.trentino.it, released under Creative Commons Attribution 4.0 licence.

What to do

  1. Unzip exercises zip in a folder, you should obtain something like this:

price-catalog-prj
    price-catalog.ipynb
    price-catalog-sol.ipynb
    EPPAT-2018-new-compact.csv
    jupman.py

WARNING: to correctly visualize the notebook, it MUST be in an unzipped folder !

  1. open Jupyter Notebook from that folder. Two things should open, first a console and then a browser. The browser should show a file list: navigate the list and open the notebook price-catalog.ipynb

  2. Go on reading the notebook, and write in the appropriate cells when asked

Shortcut keys:

  • to execute Python code inside a Jupyter cell, press Control + Enter

  • to execute Python code inside a Jupyter cell AND select next cell, press Shift + Enter

  • to execute Python code inside a Jupyter cell AND a create a new cell aftwerwards, press Alt + Enter

  • If the notebooks look stuck, try to select Kernel -> Restart

The dataset

Let’s have a quick look at the file EPPAT-2018-new-compact.csv. We will show examples with pandas, but it is not required to solve the exercises.

DO NOT WASTE TIME LOOKING AT THE WHOLE DATASET!

The dataset is quite complex, please focus on the few examples we provide

[1]:
import pandas as pd
import numpy as np

pd.set_option('display.max_colwidth', None)
df = pd.read_csv('EPPAT-2018-new-compact.csv', encoding='latin-1')

The dataset contains several columns, but we will consider the following ones:

[2]:
df=df[['Codice Prodotto','Descrizione Breve Prodotto','Categoria','Prezzo']]
df[:22]
[2]:
Codice Prodotto Descrizione Breve Prodotto Categoria Prezzo
0 A.02.35.0050 ATTREZZATURA PER INFISSIONE PALI PILOTI NaN NaN
1 A.02.35.0050.010 Attrezzatura per infissione pali piloti. Noli e trasporti 109.09
2 A.02.40 ATTREZZATURE SPECIALI NaN NaN
3 A.02.40.0010 POMPA COMPLETA DI MOTORE NaN NaN
4 A.02.40.0010.010 fino a mm 50. Noli e trasporti 2.21
5 A.02.40.0010.020 oltre mm 50 fino a mm 100. Noli e trasporti 3.36
6 A.02.40.0010.030 oltre mm 100 fino a mm 150. Noli e trasporti 4.42
7 A.02.40.0010.040 oltre mm 150 fino a mm 200. Noli e trasporti 5.63
8 A.02.40.0010.050 oltre mm 200. Noli e trasporti 6.84
9 A.02.40.0020 GRUPPO ELETTROGENO NaN NaN
10 A.02.40.0020.010 fino a 10 KW Noli e trasporti 8.77
11 A.02.40.0020.020 oltre 10 fino a 13 KW Noli e trasporti 9.94
12 A.02.40.0020.030 oltre 13 fino a 20 KW Noli e trasporti 14.66
13 A.02.40.0020.040 oltre 20 fino a 28 KW Noli e trasporti 15.62
14 A.02.40.0020.050 oltre 28 fino a 36 KW Noli e trasporti 16.40
15 A.02.40.0020.060 oltre 36 fino a 56 KW Noli e trasporti 28.53
16 A.02.40.0020.070 oltre 56 fino a 80 KW Noli e trasporti 44.06
17 A.02.40.0020.080 oltre 80 fino a 100 KW Noli e trasporti 50.86
18 A.02.40.0020.090 oltre 100 fino a 120 KW Noli e trasporti 55.88
19 A.02.40.0020.100 oltre 120 fino a 156 KW Noli e trasporti 80.47
20 A.02.40.0020.110 oltre 156 fino a 184 KW Noli e trasporti 94.00
21 A.02.40.0030 NASTRO TRASPORTATORE CON MOTORE AD ARIA COMPRESSA NaN NaN

Pompa completa a motore Example

If we look at the dataset, in some cases we can spot a pattern (rows 3 to 8 included):

[3]:
df[3:12]
[3]:
Codice Prodotto Descrizione Breve Prodotto Categoria Prezzo
3 A.02.40.0010 POMPA COMPLETA DI MOTORE NaN NaN
4 A.02.40.0010.010 fino a mm 50. Noli e trasporti 2.21
5 A.02.40.0010.020 oltre mm 50 fino a mm 100. Noli e trasporti 3.36
6 A.02.40.0010.030 oltre mm 100 fino a mm 150. Noli e trasporti 4.42
7 A.02.40.0010.040 oltre mm 150 fino a mm 200. Noli e trasporti 5.63
8 A.02.40.0010.050 oltre mm 200. Noli e trasporti 6.84
9 A.02.40.0020 GRUPPO ELETTROGENO NaN NaN
10 A.02.40.0020.010 fino a 10 KW Noli e trasporti 8.77
11 A.02.40.0020.020 oltre 10 fino a 13 KW Noli e trasporti 9.94

We see the first column holds product codes. If two rows share a code prefix, they belong to the same product type. As an example, we can take product A.02.40.0010, which has 'POMPA COMPLETA A MOTORE' as description (‘Descrizione Breve Prodotto’ column). The first row is basically telling us the product type, while the following rows are specifying several products of the same type (notice they all share the A.02.40.0010 prefix code until 'GRUPPO ELETTROGENO' excluded). Each description specifies a range of values for that product: fino a means until to , and oltre means beyond.

Notice that:

  • first row has only one number

  • intermediate rows have two numbers

  • last row of the product series (row 8) has only one number and contains the word oltre ( beyond ) (in some other cases, last row of product series may have two numbers)

A1 extract_bounds

Write a function that given a Descrizione Breve Prodotto as a single string extracts the range contained within as a tuple.

If the string contains only one number n:

  • if it contains UNTIL ( ‘fino’ ) it is considered a first row with bounds (0,n)

  • if it contains BEYOND ( ‘oltre’ ) it is considered a last row with bounds (n, math.inf)

DO NOT use constants like measure units ‘mm’, ‘KW’, etc in the code

Show solution
[4]:
import math

#use this list to rmeove unneeded stuff
PUNCTUATION=[',','-','.','%']
UNTIL = 'fino'
BEYOND = 'oltre'

def extract_bounds(text):
    raise Exception('TODO IMPLEMENT ME !')

assert extract_bounds('fino a mm 50.') == (0,50)
assert extract_bounds('oltre mm 50 fino a mm 100.') == (50,100)
assert extract_bounds('oltre mm 200.') == (200, math.inf)
assert extract_bounds('da diametro 63 mm a diametro 127 mm') == (63, 127)
assert extract_bounds('fino a 10 KW') ==  (0,10)
assert extract_bounds('oltre 156 fino a 184 KW') ==  (156,184)
assert extract_bounds('fino a 170 A, avviamento elettrico') == (0,170)
assert extract_bounds('oltre 170 A fino a 250 A, avviamento elettrico') == (170, 250)
assert extract_bounds('oltre 300 A, avviamento elettrico')  == (300, math.inf)
assert extract_bounds('tetti piani o con bassa pendenza - fino al 10%') == (0,10)
assert extract_bounds('tetti a media pendenza - oltre al 10% e fino al 45%') == (10,45)
assert extract_bounds('tetti ad alta pendenza - oltre al 45%') == (45, math.inf)

A2 extract_product

Write a function that given a filename, a code and a unit, parses the csv until it finds the corresponding code and RETURNS one dictionary with relevant information for that product

  • Prezzo ( price ) MUST be converted to float

  • USE a csv.DictReader for parsing, see example

  • USE latin-1 as encoding

[5]:
# Suppose we want to get all info about A.02.40.0010 prefix:
df[3:12]
[5]:
Codice Prodotto Descrizione Breve Prodotto Categoria Prezzo
3 A.02.40.0010 POMPA COMPLETA DI MOTORE NaN NaN
4 A.02.40.0010.010 fino a mm 50. Noli e trasporti 2.21
5 A.02.40.0010.020 oltre mm 50 fino a mm 100. Noli e trasporti 3.36
6 A.02.40.0010.030 oltre mm 100 fino a mm 150. Noli e trasporti 4.42
7 A.02.40.0010.040 oltre mm 150 fino a mm 200. Noli e trasporti 5.63
8 A.02.40.0010.050 oltre mm 200. Noli e trasporti 6.84
9 A.02.40.0020 GRUPPO ELETTROGENO NaN NaN
10 A.02.40.0020.010 fino a 10 KW Noli e trasporti 8.77
11 A.02.40.0020.020 oltre 10 fino a 13 KW Noli e trasporti 9.94

A call to

pprint(extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0010', 'mm'))

Must produce:

{'category': 'Noli e trasporti',
 'code': 'A.02.40.0010',
 'description': 'POMPA COMPLETA DI MOTORE',
 'measure_unit': 'mm',
 'models': [{'bounds': (0, 50),        'price': 2.21, 'subcode': '010'},
            {'bounds': (50, 100),      'price': 3.36, 'subcode': '020'},
            {'bounds': (100, 150),     'price': 4.42, 'subcode': '030'},
            {'bounds': (150, 200),     'price': 5.63, 'subcode': '040'},
            {'bounds': (200, math.inf),'price': 6.84, 'subcode': '050'}]}

Notice that if we append subcode to code (with a dot) we obtain the full product code.

Show solution
[6]:

import csv from pprint import pprint def extract_product(filename, code, measure_unit): raise Exception('TODO IMPLEMENT ME !') pprint(extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0010', 'mm')) assert extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0010', 'mm') == \ {'category': 'Noli e trasporti', 'code': 'A.02.40.0010', 'description': 'POMPA COMPLETA DI MOTORE', 'measure_unit': 'mm', 'models': [{'bounds': (0, 50), 'price': 2.21, 'subcode': '010'}, {'bounds': (50, 100), 'price': 3.36, 'subcode': '020'}, {'bounds': (100, 150), 'price': 4.42, 'subcode': '030'}, {'bounds': (150, 200), 'price': 5.63, 'subcode': '040'}, {'bounds': (200, math.inf),'price': 6.84, 'subcode': '050'}]} #pprint(extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0020', 'KW')) #pprint(extract_product('EPPAT-2018-new-compact.csv', 'B.02.10.0042', 'mm')) #pprint(extract_product('EPPAT-2018-new-compact.csv','B.30.10.0010', '%'))

A3 plot_product

Implement following function that takes a dictionary as output by previous extract_product and shows its price ranges.

  • pay attention to display title and axis labels as shown, using input data and not constants.

  • in case last range holds a math.inf, show a > sign

  • if you don’t have a working extract_product, just copy paste data from previous asserts.

>>> extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0010', 'mm')

expected-pompa-a-motore.png

Show solution
[7]:

%matplotlib inline import numpy as np import matplotlib.pyplot as plt def plot_product(product): raise Exception('TODO IMPLEMENT ME !') product = extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0010', 'mm') #product = extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0020', 'KW') #product = extract_product('EPPAT-2018-new-compact.csv', 'B.02.10.0042', 'mm') #product = extract_product('EPPAT-2018-new-compact.csv','B.30.10.0010', '%') plot_product(product)